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Abstract

Author: Jakub Imriška
Title: Phase diagram of a modified XY model
Type of thesis: Bachelor thesis
University: Comenius University in Bratislava
Faculty: Faculty of Mathematics, Physics and Informatics
Department: Department of Experimental Physics
Study Programme: Physics 4.1.1
Advisor: Doc. RNDr. Richard Hlubina, DrSc

We study a modified 2-dimensional XY model on the square lattice defined by the Hamiltonian

H = −
∑
〈kl〉

[J1 cos (θk − θl) + J2 cos 2 (θk − θl)] , for J2 ≥ 0,

using Monte Carlo simulations. Our goal is to specify the phases in the space of parameter j = J1
J1+4J2

and
temperature T and to determine the types of phase transitions between the phases. Our results indicate
that the phase diagram consists of 3 phases (magnetic, nematic and paramagnetic). The transition between
the magnetic and the paramagnetic phase is of the Kosterlitz-Thouless (KT) type with an universal jump
2T
π caused by unbinding of vortex pairs. The nematic-paramagnetic transition is of the KT type with an
universal jump 8T

π caused by unbinding of half-vortex pairs. The transition between the magnetic and the
nematic phase is of the Ising type.

keywords: modified XY model, Kosterlitz-Thouless phase transition, phase diagram, Monte Carlo simula-
tion, Ising phase transition, phase diagram.
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Chapter 1

Introduction

1.1 The 2-dimensional XY model

The 2-dimensional (2-D) XY model on the square lattice is defined by the Hamiltonian

HXY = −J1

∑
〈kl〉

cos (θk − θl) , (1.1)

where the indices k and l numerate the lattice sites on a 2-dimensional square lattice, the sum is over the
nearest-neighbour lattice sites and θk is the angle associated with each site. This model might be realized by
spins localized on a 2-D square lattice fixed in the lattice plane.

The long-wavelength lattice waves are responsible for destroying the long-range order in the 2-D models
[1].1 Nevertheless, there might exist a low-temperature phase with “quasi”-long-range order.2 Kosterlitz and
Thouless have shown that the model undergoes a Kosterlitz-Thouless (KT) phase transition from the “quasi”-
ordered into a disordered high-temperature phase [2]. The phase transition occurs at a temperature, when
tightly bound topological defects (pairs of vortex and anti-vortex) unbind and become free.

1.2 Modified XY model

Our modified model is defined by the Hamiltonian

H = −
∑
〈kl〉

[J1 cos (θk − θl) + J2 cos 2 (θk − θl)] , (1.2)

where J2 is considered to be non-negative. The modified model appeared to be important in the context of
“possible vortex splitting in high-temperature cuprate superconductors” [3]. The Hamiltonian Eq.(1.2) may
be, equivalently, rewritten into

H = −J
∑
〈kl〉

[
j cos (θk − θl) +

1− j
4

cos 2 (θk − θl)
]
, (1.3)

where J = J1 + 4J2 is considered to be positive and the coupling parameter j = J1
J lies in the range [0, 1].3

The choice for the unit J is motivated by the harmonic approximation of the Hamiltonian Eq.(1.3),

H −Hground ≈
J

2

∑
〈kl〉

(θk − θl)2, (1.4)

1Which is an important difference between 2-D and 3-D models.
2The “quasi”-ordered phase will be reffered to as a magnetic, and a nematic phase, although it would be more exact to call

them “quasi”-magnetic, and “quasi”-nematic.
3The interaction with negative J1 reproduces the same phases as positive J1. We show this later in Sec.1.2.2. Hence, our

study concentrates on j ∈ [0, 1], because j from that range reproduces any non-negative ratio J1
J2

.
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where Hground = −2JN2(j + 1−j
4 ) is the energy of the ground state of the lattice. Note, that the low-

temperature approximation has no dependency on j.
We will measure the temperature in most cases in units J .4 Sometimes it will be natural to use units J2

instead of J , especially for comparing results from models with different j – the unit J is namely a function
of j.

The function defining the energy of a single bond between the spins k and l is symmetric function
(regarding indices k and l),

e(θk, θl) ≡ e(θk − θl) = −J [j cos (θk − θl) +
1− j

4
cos 2 (θk − θl)]. (1.5)

For theoretical purposes it is useful to analyse also the continuous model. For spacing a → 0+ is the
harmonic approximation Eq.(1.4) exact. The Hamiltonian of the continuous “lattice” is

H −Hground ≈
J

2

∑
〈kl〉

(θk − θl)2 ≈ J

2

∑
k

[(
∂θ(rk)
∂x

a

)2

+
(
∂θ(rk)
∂y

a

)2
]
a→0+

−→ J

2

∫
d2r [∇θ(r)]2 , (1.6)

where θ(r) is the angle associated with the point r. As one might have expected, the continuous model has
again no dependency on j.

1.2.1 Similarity between j = 0 and j = 1.
In this section we denote the parameter j by an upper index. The Hamilonians of the models with j = 1 and
j = 0 are

H [1](θ) = −J
∑
〈kl〉

cos (θk − θl) , (1.7)

H [0](θ) = −J
4

∑
〈kl〉

cos 2 (θk − θl) . (1.8)

The space of all possible configurations θ of a latticeN×N is C ≡ [0, 2π)n, where n ≡ N2. Equivalently, we
may describe the space of all possible configurations θ in a different way, as an element of the space C ′ ≡ C1×
C2, where C1 ≡ {0, 1}n and C2 ≡ [0, π)n. Then the configuration c′ ≡ (p, r) ≡ (p1, p2, ..., pn, r1, r2, ..., rn) ∈
C ′; pi ∈ {0, 1}, ri ∈ [0, π) is encoding the information θi = πpi + ri.5 The advantage of this notation is that
the energy H [0] does not depend on p and may be expressed as

H [0](p, r) = H [0](r) =
1
4
H [1](2r), (1.9)

where 2r is an element of C.
The statistical sum for j = 1 is

Z [1](T ) =
∫
C

Dθ e−
H[1](θ)
T . (1.10)

where Dθ ≡ dnθ =
∏
i dθi is an n-dimensional differential. The statistical sum for j = 0 is

Z [0](T ) =
∫
C2

Dr 2ne−
H[0](r)
T =

[
subst.
θi = 2ri

]
=
∫
C

Dθ e−
H[1](θ)

4T = Z [1](4T ). (1.11)

That gives us a powerful tool. We define transformation Tp : C → C as follows

Tp : θi 7−→ πpi + θi/2, (1.12)

where pi ∈ {0, 1}. Then for the probabilities hold

p[1][θ, 4T ] =
1

Z [1](4T )
e−

H[1]
4T = p[0][Tp(θ), T ], (1.13)

4As one my colleague suggested, it might be Joule as the unit of energy.
5Surely, both ways enable to describe any configuration and there is bijection between the 2 configuration spaces.
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which guarantees that the phase in model with j = 1 at a certain temperature 4T will be the same, in the
sense of transformation Tp, as in the model with j = 0 at T .

If we have analogous functions X(θ) and Y (θ) satisfying X(p, r) = X(r) = Y (2r) then for their averages
hold equation

〈X(T )〉C,j=0 =
1

Z [0](T )

∫
C′
Dr 2n Y (2r) e−

H[1](2r)
4T =

1
Z [1](4T )

∫
C

Dθ Y (θ) e−
H[1](θ)

4T = 〈Y (4T )〉C,j=1 . (1.14)

1.2.2 Similarity between J1 and −J1.
We consider J1 > 0. Like in the previous subsection, we denote with an upper index the sign in front of J1,

H+ = −
∑
〈kl〉

[J1 cos (θk − θl) + J2 cos 2 (θk − θl)] , (1.15)

H− = −
∑
〈kl〉

[−J1 cos (θk − θl) + J2 cos 2 (θk − θl)] . (1.16)

We define the transformation t : C → C as following: Let [x, y] be the coordinates of a spin in our square
N ×N lattice. Then we will change the angle of all spins with odd (x+ y) by π.6 It is not surprising that

H+ [t(θ)] = H−[θ]. (1.17)

The statistical sum Z+(T ) is the same as Z−(T ), because7

Z+(T ) =
∫
C

Dθ e−
H+(θ)
T =

∫
C

Dθ e−
H+[t(θ)]

T =
∫
C

Dθ e−
H−(θ)
T = Z−(T ). (1.18)

For the probabilities we get
p+ [t(θ), T ] = p− [θ, T ] , (1.19)

and we can conclude that the phases of the model with J1 must be in a one-to-one relation with the phases
of the model with −J1.8

1.2.3 Expectations
For j = 1, our model is identical to the usual XY model that has a “quasi”-magnetic low-temperature
phase (which will be referred to shortly as “magnet”) and a disordered paramagnetic high-temperature phase
(“paramagnet”). The phase transition at TC(j = 1) between the 2 phases is of the KT type.

For j = 0 the situation is almost the same (see Sec.1.2.1), only the low-temperature phase consists of spins
with random orientations and the phase transition is result of unbinding of pairs consisting of a half-vortex
and an anti-half-vortex. Half-vortices are excitations analogous to vortices in respect to the transformation
Eq.(1.12). The low-temperature ordered phase with random spin orientation will be referred to as the nematic
phase. The phase transition at TC(j = 0) = 1

4TC(j = 1) is of the KT type.
The aim of this thesis is to prove or disprove following hypotheses:
For small j, the dominant term in the Hamiltonian Eq.(1.3) is J2. For sufficiently small j we may sketch

a gedanken experiment: at zero temperature the configuration is in the ground state, all spins are uniformly
directed and oriented. If we heat up the configuration, there should exist a (low) temperature T1(j), at
which the thermal fluctuations are of the same order as J1. At temperatures above T1(j) the spins became
free in orientation (ruled by the J1-interaction), but they remain bound concerning their direction (ruled by
the dominant J2-interaction) – the system undergoes a phase transition from the magnetic phase into the
nematic phase. By further heating up we come to the temperature T2(j) ∼ TC(j = 0), at which the KT
phase transition between the nematic and the paramagnetic phase due to half-vortex pair unbinding (as for
j = 0) occurs.

6Every spin with odd (x+ y) has neighbours with even (x+ y) and vice versa.
7The Jacobian of the transformation t is 1.
8For example, if the model with J1 at temperature T is in the ferromagnetic phase (or the paramagnetic, or the nematic),

then the model with −J1 at the same temperature T is in the antiferromagnetic phase (or the paramagnetic, or the nematic
phase).
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Figure 1.1: Typical spin configurations in the magnetic (left), the nematic (in the middle) and the paramagnetic
(right) phase.

The phase transition at T1 between the magnetic and nematic phases resembles the Ising phase transition.9
It is known that the phase transition for the Ising model defined by the Hamiltonian HIsing = −K

∑
〈kl〉 SkSl,

where Sk = ±1 and the coupling constant K is positive (ferromagnet), occurs at TIsing = 2K
ln(1+

√
2)
. Therefore

we may estimate that the phase transition between the magnetic and the nematic phase for our problem
occurs at

T1(j) ≈ 2jJ
ln(1 +

√
2)
. (1.20)

Concluding, for values of j such that T1(j) < T2(j) we should find 3 phases (the low-temperature magnetic
phase, the intermediate-temperature nematic phase and the high-temperature paramagnetic phase) and 2
phase transitions (of the Ising type between the magnetic and the nematic phase, and of the KT type
between the nematic phase and the paramagnet).

For j that do not satisfy the condition T1(j) < T2(j) it might be expected that there exist only 2 phases:
the magnet and the paramagnet, separated by the KT phase transition due to vortex unbinding.

9A similar Ising-like phase transition between “the nematic and almost-tetratic phase” is presented in [4].
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Chapter 2

KT phase transition

2.1 The KT magnetic-paramagnetic phase transition

In this section we will derive the Kosterlitz-Thouless (KT) equation [2] for the magnetic-paramagnetic phase
transition in the modified XY model. We claim that at the magnetic-paramagnetic phase transition the half-
vortices do not play a role because the unbinding of them costs extra free energy of domain walls stretched
between the half-vortex and anti-half-vortex (see Fig.2.1), which scales linearly with the distance between
them. A free half-vortex in the paramagnetic phase at temperature T just above the magnetic-paramagnetic
phase transition would have an infinitely long domain wall. Since in the magnetic phase the domain walls
are energetically unfavorable, they would be also in the paramagnetic phase at temperature close to the
phase transition. Thus, a free half-vortex would have linearly infinite free energy – which implies that free
half-vortices are at the magnetic-paramagnetic phase transition not present.

Figure 2.1: Configuration with a half-vortex (right) and an anti-half-vortex (left) “connected” with a domain wall
(dotted segment line) for j > 0.

We will assume that the KT phase transition occurs only because of vortex pair unbinding. We will
analyse the continuous model Eq.(1.6). We will inspect the problem far from boundaries, therefore we may
assume periodic boundary conditions of a large square lattice, �A = [−A,A]× [−A,A] with sufficiently large
A > 0. In order to minimize the energy we have to find the extrema of the functional F [θ(r)] =

∫
d2r [∇θ(r)]2.

The extrema have to satisfy the Laplace equation1

∆θ(r) = 0. (2.1)

1Our problem is therefore equivalent to the 2D electrostatics without charges.

9



The Laplace equation is solved by harmonic functions. A harmonic function u(x, y) is smooth and if we
add to it i times its harmonic conjugate function ũ(x, y), we obtain a holomorphic complex function u+ iũ.
The Cauchy-Riemann equations holds for them,

∂u

∂x
=
∂ũ

∂y
,

∂u

∂y
= −∂ũ

∂x
. (2.2)

Therefore both, the function u and the function ũ, are solutions of our variational problem. Moreover, the
solutions have the same energy.

2.1.1 Vorticity
We will define a new quantity, the vorticity of a simply connected subset S of �A

Vθ(S) =
1

2π

∮
∂S

dθ =
1

2π

∮
∂S

dr · ∇θ, (2.3)

where the contour integral is taken, as always in this paper, counter-clockwise.

2.1.2 Spin-wave solution
Functions that are solutions of Laplace equation in the whole region �A are smooth in �A. This type of
solution we will call the spin-wave solution and denote it by ψ. It is clear that the harmonic conjugate
function of a spin-wave solution is also a spin wave solution. We will introduce the differential operator
∇⊥ ≡ ∂yê1 − ∂xê2 that applied on a continuously differentiable function u gives the vector ∇u rotated by
−π2 with a useful property

∇u = ∇⊥ũ, ∇⊥u = −∇ũ. (2.4)

The vorticity of a spin-wave solution for an arbitrary simply connected subset S is 0. We will prove that
using the divergence theorem as follows∮

∂S

dr · ∇ψ =
∮
∂S

dl n · ∇⊥ψ =
∫
S

d2r ∇ · ∇⊥ψ = 0, (2.5)

where the unit vector n is perpendicular to the loop ∂S and is directed outwards from S; the differential
operator ∇ · ∇⊥ ≡ ∂xy − ∂yx applied on a smooth function gives 0.

2.1.3 Vortex
We will assume that the configuration θ(r) is a superposition of a continuously differentiable (smooth) spin-
wave solution ψ with vorticity equal 0 and vortices – elementary point excitations with non-zero vorticity –
that produce the field φ. A single vortex i in the point ri with ’charge’ qi ∈ {±1} is described by2

φi(r) = qi arg[(x− xi) + i(y − yi)]. (2.6)

A vortex with positive “charge” will be reffered to simply as a vortex, and vortex with negative ’charge’ will
be referred to as an anti-vortex; see Fig.2.2. The discontinuity for x < xi, y = yi is irrelevant because the
original (anharmonic) Hamiltonian Eq.(1.3) does not “see” the phase difference 2π there. Therefore we can
simply ignore this discontinuity. However, the point discontinuity at ri is relevant and in that point the
Laplace equation is not satisfied – therefore the vortex is a point excitation.

The vortex configuration can be defined by the vortex density

ρ(r) =
∑
i

qi δ(r− ri). (2.7)

The phase field corresponding to this vortex density is then

φ(r) =
∑
i

qi arg[(x− xi) + i(y − yi)]. (2.8)

2Remember that the complex logarithm ln z
d

= ln r
d

+ i arg z with a real parameter d is holomorphic for z 6= 0.
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Figure 2.2: Examples of a single vortex (left) and an anti-vortex (right).

The harmonic conjugate field is

φ̃(r) = −
∑
i

qi ln
|r− ri|
d

. (2.9)

Since ∆
[

1
2π ln r

d

]
= δ(r) in 2D, we may write for the harmonic conjugate field the following (Poisson) equation

∆φ̃ = −2πρ. (2.10)

The rotated gradient of φ is

∇⊥φ(r) = −∇φ̃(r) =
∑
i

qi
r− ri
|r− ri|2

. (2.11)

Vorticity of a vortex configuration

The vorticity of a simply connected set S ⊂ �A containing vortices indexed with i can be calculated as
follows

Vφ(S) =
1

2π

∮
∂S

dl n · ∇⊥φ =
1

2π

∫
S′

d2r ∇ · ∇⊥φ+
1

2π

∑
i

∮
∂B(ri,ε)

dl n · ∇⊥φ,

= 0 +
1

2π

∑
i

qi

∮
∂B(ri,ε)

dl n · ∇
[
qi ln

|r− ri|
d

− φ̃i
]

=
1

2π

∑
i

∮
∂B(ri,ε)

dl
[qi
ε
− n · ∇φ̃i

]
=
∑
i

qi,

where φ̃i(r) ≡ −
∑
j 6=i qj ln |r−rj |

d is the harmonic conjugate vortex field of all vortices in �A except for the
vortex i; ∂X stands for the boundary of set X. The useful trick was to apply the divergence theorem on a
non-simply connected set S′ ≡ S \

⋃
iB(ri, ε) without open balls B(ri, ε) around the vortices (see Fig.2.3)

and to replace ∇⊥u by −∇ũ. Thus we have found that the total vorticity is the sum of vortex charges inside
S.

Energy of a vortex configuration

The energy of a single vortex located at the origin of a real (discrete) lattice is

Hvortex −Hground ≈
J

2

∫
�A\B(0,a′)

d2r (∇φ)2 ≈ πJ
∫ A

a′

dr
r
≈ πJ ln

A

a′
, (2.12)
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Figure 2.3: Left: A simply connected set S (hatched) containing vortices (displayed as “V”). Right: The non-simply
connected set S′ ≡ S \

⋃
iB(ri, ε) is shown as the grey area.

where the a′ ∼ a is a cutoff of the integral at the lower boundary. The entropy of a single vortex is
S ≈ ln πA2

a2 ≈ 2 ln A
a . This indicates that the presence of a single vortex will lower the free energy F = E−TS

of the system for temperatures TC ' πJ
2 . Below TC there should not exist any free vortices.3 That enables

us to consider periodic boundary conditions - namely, the total vorticity of �A with periodic boundary
conditions is zero and therefore the number of positive vortices in �A with periodic boundary conditions
must be equal to the number of anti-vortices.

We are trying to make a low-temperature approximation and therefore we may consider that there are
no free vortices, only pairs of them. The energy of N vortices may be calculated as follows

H −Hground =
J

2

∫
�′A

d2r [∇φ̃]2 +NHcore =
J

2

∫
�′A

d2r [∇(φ̃∇φ̃)− φ̃ ∆φ̃] +NHcore,

=
J

2

∮
∂�A

dl n · (φ̃∇φ̃)− J

2

∑
i

∮
∂B(ri,a′)

dl n · (φ̃∇φ̃)− 0 +NHcore,

= 0− J

2

∑
i

∫ 2π

0

a′ dα
(
φ̃i(ri + a′n)− qi ln

a′

d

)[
n · ∇φ̃i(ri + a′n)− qi

a′

]
+NHcore,

= πJ
∑
i

qi

[
φ̃i(ri)− qi ln

a′

d

]
+NHcore = −πJ

∑
i6=j

qiqj ln
rij
d

+Nµ,

where we have denoted the integral
∫
B(ri,a′)

d2r [∇φ̃]2 of the energy of the core of a vortex or an anti-vortex
as Hcore. This term is within the continuous theory not well defined, but it is obvious that the term is the
same for a vortex as well for an anti-vortex. The value of Hcore contributes to the chemical potential µ of
a single vortex. We have assumed that the value of φ̃i(ri + a′n) has a sufficiently small variation in the
neighbourhood of ri; �′A denotes �A \

⋃
iB(ri, a′) and we have used that

• ∆φ̃ = 0 everywhere in �A \
⋃
iB(ri, a′),

•
∮
∂�A

dl n · (φ̃∇φ̃) = 0 because of periodic boundary conditions, since φ̃(r + 2Aêx) = φ̃(r) and ∇φ̃(r +
2Aêx) = ∇φ̃(r), and for y-direction similarly, but the vector n directs always outwards of �A.

We may choose the constant d freely, so we set d = a. Then, the value of the chemical potential µ may
be estimated for an isolated pair vortex–anti-vortex at the distance of lattice spacing a. We may place the
vortex into a centre of an arbitrary square of lattice points and the anti-vortex into the centre of a square
next to it. In case we place the vortex to (−a2 , 0) and the anti-vortex to (a2 , 0), then the chemical potential
is given by

2µ = J
∑
〈kl〉

[
j +

1− j
4
− e(θk − θl)

]
.

The precise value4 of µ may be calculated numerically by taking the sum over the nearby lattice points and

3The increase of the free energy due to a free vortex on a realistic lattice is huge, as A
a′ ≫ 1.

4The drawback of this calculation is that on a real discrete lattice we should solve instead of the Laplace equation ∆θ = 0

(which assumed harmonic approximation) an array of (anharmonic) equations ∂Ek
∂θk

= 1
2

∑
〈kl〉 e

′(θk − θl) = 0.
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approximating the rest by an integral. The phase configuration is

θ = arg
[(
x+

a

2

)
+ iy

]
− arg

[(
x− a

2

)
+ iy

]
,

θ̃ = −1
2

ln

(
x+ a

2

)2 + y2

a
+

1
2

ln

(
x− a

2

)2 + y2

a

and corresponding term needed in integral is [∇θ]2 = [∇θ̃]2 ≈ a2

r4 to the second order in the vortex distance
a. Therefore, the energy of a vortex–anti-vortex pair may be calculated as follows

2µ = J
∑
〈kl〉

|rk|,|rl|<R

[
j +

1− j
4
− e(θk − θl)

]
+
J

2

∫ ∞
R

2πr dr
a2

r4
.

The estimated value for j = 1 is µ = 3.311 J .

2.1.4 Independence of spin waves and vortices
The continuously differentiable (smooth) spin-wave solution ψ is not a point of our study. We have to show
that it is possible to study the vortex solution apart from spin waves – i.e. that the vortex solution and the
spin-wave solution are independent, which means that the cross-term in energy vanishes:∫

�A

d2r ∇ψ · ∇φ =
∫

�A

d2r ∇ψ̃ · ∇φ̃ =
∫

�A\
⋃
i B(ri,ε)

d2r
[
∇
(
φ̃ ∇ψ̃

)
−∆ψ̃ φ̃

]
+
∑
i

∫
B(ri,ε)

d2r ∇ψ̃ · ∇φ̃,

=
∮
∂�A

dl n ·
(
φ̃ ∇ψ̃

)
−
∑
i

[
∇ψ̃(ri) ·

∮
∂B(ri,ε)

dl φ̃ n

]
+
∑
i

[
∇ψ̃(ri) ·

∫
B(ri,ε)

d2r ∇φ̃

]
= 0.

All terms are zero:

• the first term: due to the periodic boundary conditions,

• the first sum is zero, because each integral is zero,∣∣∣∣∣
∮
∂B(ri,ε)

dl φ̃ n

∣∣∣∣∣ ≤
∮
∂B(ri,ε)

dl (ln
ε

d
+ φ̃i)

ε→0+

→ 0.

• the second sum is zero, because each integral is zero,∣∣∣∣∣
∫
B(ri,ε)

d2r ∇φ̃

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
B(ri,ε)

d2r ∇φ̃i

∣∣∣∣∣+ |qi|
∫ ε

0

2πr dr
r

ε→0+

→ 0.

2.1.5 2D electrostatics
We will assume a configuration with dilute bound vortex–anti-vortex pairs. A dipole moment p of a vortex
configuration is, as usual, p =

∫
ρ(r) d2r =

∑
i qi. The energy of the configuration described by φ̃(r) is

H0 = πJ
∑
i

qiφ̃i + µ
∑
i

q2
i .

Now imagine that we add a new pair (the vortex into r+ and the anti-vortex into r−) into this configuration
far away from each present vortex or anti-vortex. The dipole moment of the pair is p = r+−r−.5 The energy
of this new configuration will be

H = H0 + 2µ+ 2πJ ln
p

a
+ 2πJ

[
φ̃(r+)− φ̃(r−)

]
= H0 + 2µ+ 2πJ ln

p

a
− 2πJ E · p,

where E = −∇φ̃ is the analogue to the electric intensity.
5In our case, |p| is the length of the pair.
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The polarizability α(p) of a pair (in rotationally invariant systems) with dipole moment p is defined

α(p) = lim
E→0+

〈p(p)〉
E

= lim
E→0+

p
∫ 2π

0
dϑ cosϑ exp 2πJEp cosϑ

T

E
∫ 2π

0
dϑ exp 2πJEp cosϑ

T

=
πJp2

T
. (2.13)

Note that α depends on the length p of the dipole.
If the concentration of pairs (number of pairs per area) is n, then the polarization density is P = n 〈p〉

and the susceptibility is χ = 2πJ lim
E→0+

P
E . Since the polarizability depends on the length of the dipole, we

should write more correctly for uniformly small E

P =
∫ ∞

0

dp n(p) 〈p(p)〉 =
1

2πJ

∫ ∞
0

dp χ(p) E, (2.14)

where n(p) is the density of concentration of pairs with dipole moment p.6 Combining with Eq.(2.13) we
obtain

1
2πJ

χ(p) = α(p) n(p). (2.15)

For the intensity along the x axis E = (E, 0) the induced vortex density from pairs with fixed x-component
of the dipole moment p is equal to

ρ(px) =
−npx(x+ dx) lpx + npx(x) lpx

l dx
= −∂Ppx

∂x
,

see Fig.2.4. For an arbitrary intensity E and integrated over all px we get ρind = −∇ ·P.

Figure 2.4: Visual help for deriving the formula for the induced vortex density.

The Poisson equation for the harmonic conjugate configuration Eq.(2.10) should be rewritten, if we take
into account the polarization, as

∆φ̃ = −2π(ρ−∇ ·P), or ∇ · (E + 2πP) = ∇ · (εE) = 2πρ. (2.16)

2.2 KT equations
The dielectric function can be expressed using relations Eq.(2.14) and Eq.(2.15) as

ε = 1 + 2π
∫

dp α(p) n(p), (2.17)

where we have to be careful about the integration area. Namely, the dielectric function at small distances will
not be affected by the pairs with a large dipole moment. More correctly, we have to introduce the dielectric
function as a function of distance7

ε(r) = 1 + 2π
∫ r

a

dp α(p) n(p). (2.18)

6Thus n(p) dp is the concentration of pairs with dipole moment from interval [p, p+ dp].
7The equation for the dielectric function ε(r) is clearly not precise, because the upper boundary of the integral is only of the

same order like r, it does not have to be exactly r.
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The density of concentration n(p) of pairs with the dipole moment p on a lattice N ×N with spacing a is

n(p) dp =
1

(Na)2

2πp dp
a2

e−V (p)/T , (2.19)

where V (p) is the energy of the pair at distance p.
The energy of a vortex–anti-vortex pair in an empty (concerning other vortices) lattice is V (r) = 2µ +

2πJ ln r
a . The energy of a pair in a polarisable (containing other vortices) medium is

V (r) = 2µ+ 2πJ
∫ r

a

dr′

r′ ε(r′)
, (2.20)

where 2πJ
r′ ε(r′) is the force between the vortex and the anti-vortex in polarisable medium.

Altogether, we have a system of 2 integral equations

ε(r) = 1 +
4π3J

a4T

∫ r

a

dr′ r′3 e−
V (r′)
T , V (r) = 2µ+ 2πJ

∫ r

a

dr′

r′ ε(r′)
. (2.21)

We will continue rewriting the above system following the [5]. We define

ε(r) ≡ K0

K(r)
, where K0 ≡

J

T
, (2.22)

U(r) ln
r

a
≡
∫ r

a

K(r′) dr′

r′
, (2.23)

y(r) ≡ y0

( r
a

)2−πU(r)

, where y0 ≡ e−
µ
T . (2.24)

Then it is possible to write the system in the form

y2(r) = y2
0

( r
a

)4−2πU(r)

,
1

K(r)
=

1
K0

+ 4π3

∫ r

a

dr′

r′
y2(r′), (2.25)

or in the differential form

dK−1(r)
dr

= 4π3 y
2(r)
r

,
dy(r)

dr
=

2− πK(r)
r

y(r), (2.26)

or, using the substitution s ≡ ln r
a ,

dK−1(s)
ds

= 4π3 y2(s),
dy(s)

ds
= [2− πK(s)] y(s), (2.27)

with initial conditions
K(s = 0) = K0 =

J

T
, y(s = 0) = y0 = e−

µ
T . (2.28)

The last form of the system of equations reveals that it has a fixed point for K = 2
π , y = 0. We see that

K is non-increasing function. Therefore if K(s0) = 2
π − r and r > 0 for any s0, then y(s) will grow faster

then exponentially with s for s > s0, and K(∞) = 0; K s→∞→ 0 means that the force between a vortex and
an anti-vortex at large distance vanishes; thus the vortices may become free. On the other hand, K(∞) > 0
means that the force between a vortex and an anti-vortex does not vanish even at large distances, thus the
vortices are then (tightly) bound. Thus, the KT equations predict an universal jump 2T

π of K. The 2 basic
types of solutions of equations Eq.(2.27) and the critical solution are shown in Fig.2.5.

In the neighbourhood of the fixed point, we may find asymptotic solution. If K(s) = 2
π + z(s) and

z(s0)� 2
π then K−1 ≈ π

2 −
π2

4 z and we get equations

z′ = −16πy2, y′ = −πzy. (2.29)

We make ansatz z = A sα, y = B sβ . The obtained asymptotic solution is

K(s) =
2
π

+
1
πs

=
2
π

[
1 +

1
2s

]
, y =

1
4πs

. (2.30)
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Figure 2.5: Numerical solution of the system of differential equations Eq.(2.27) with initial conditions K(s = 0) ≡
K0 = J

T
and y(s = 0) ≡ y0 = e−µ/T = e−µK0/J (see Eq.(2.28)); the value of the chemical potential was taken for

j = 1, namely µ = 3.311 J ; the lines (a), (b) and (c) correspond to K0 = 2
π

+ 0.23942, K0 = 2
π

+ 0.25942 and
K0 = 2

π
+ 0.27942, respectively. Left: The numerical solution in the plane K, y; the arrow displays the evolution with

the increasing s. Right: The numerical solution K as a function of s.

2.3 The KT nematic-paramagnetic phase transition
In the previous section we stated that half-vortices may unbind only at the transition between the nematic
and the paramagnetic phase, because in the nematic phase the domain walls (which are stretched between
the unbinding half-vortex and anti-half-vortex) are already present and therefore do not cost any additional
free energy. As will be shown, the total energy of a free half-vortex is quarter of the total energy of a free
vortex. That gives us argument why not to take the vortices at the nematic-paramagnetic phase transition
into account.8

Therefore, we may assume that the KT phase transition occurs due to half-vortex unbinding. We revise
the previous section in order to derive the KT equations for half-vortex pair unbinding. The changes are
following:

• The ansatz for vortex configurations Eq.(2.6) remains, but possible charges for half-vortices (see Fig.2.6)
are q = ± 1

2 .
9 The vortex density, the phase field and the harmonic conjugate have the same form. The

Poisson equation Eq.(2.10) remains without changes, too.

• The energy of a free half-vortex is approximately

Hvortex −Hground ≈
J

2

∫
�A\B(0,a′)

d2r (∇φ)2 ≈ πJ

4

∫ A

a′

dr
r
≈ πJ

4
ln
A

a′
, (2.31)

which is 4-times less than the energy of a vortex. That explains why it is possible to neglect the effect
of vortices at the phase transition between the nematic and the paramagnetic phase.

• Since the conjugate field does not change its form, the energy of a vortex solution will not change, too.
The chemical potential µ does depend explicitly on j, as it was in the previous section. The proof of
the independence of half-vortex solution on spinwaves might follow the proof of independence of vortex
solution on spinwaves from the previous section.

• In the 2D electrostatics is the magnitude of dipole moment of a half-vortex–anti-half-vortex pair |p|
half of the length of the pair. The energy of a dipole pair in the vortex configuration −2πJE ·p remains
valid. The polarizability as a function of distance r will be multiplied with the factor 1

4 ,

α(r) =
πJr2

4T
. (2.32)

8The argument is the same as why is in the usual XY model the effect of the double-vortices negligible; where a double-vortex
has vorticity ±4π.

9For smoothness of the half-vortex solution out of their centers ri it is needed that the phase difference π is irrelevant in the
Hamiltonian. This is true in the nematic phase.
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Figure 2.6: Examples of a single half-vortex (left) and an anti-half-vortex (right) for j > 0; in the model with j = 0
is the orientation of spins random.

The concentration n(r) dr as a function of distance remains the same. The KT equations are

ε(r) = 1 +
π3J

a4T

∫ r

a

dr′ r′3 e−
V (r′)
T , V (r) =

µ

2
+
πJ

2

∫ r

a

dr′

r′ ε(r′)
. (2.33)

We define

ε(r) ≡ K0

K(r)
, where K0 ≡

J

T
, (2.34)

U(r) ln
r

a
≡
∫ r

a

K(r′) dr′

r′
, (2.35)

y(r) ≡ y0

( r
a

)2−πU(r)
4

, where y0 ≡ e−
µ
4T . (2.36)

and after the substitution s = ln r
a we obtain equations

dK−1(s)
ds

= π3 y2(s),
dy(s)

ds
= [2− π

4
K(s)] y(s), (2.37)

with initial conditions
K(s = 0) = K0 =

J

T
, y(s = 0) = y0 = e−

µ
4T . (2.38)

• If we analyze the system of equations Eq.(2.37) we see that the universal jump is in this case 8T
π . From

the analysis near the fixed point we get the asymptotic solution

K(s) =
8
π

[
1 +

1
2s

]
. (2.39)

2.4 Renormalization of J due to anharmonicity

The low-temperature harmonic approximation of the Hamiltonian Eq.(1.4) is

H0 =
J

2

∑
〈kl〉

(θk − θl)2. (2.40)
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With gradient q of externally imposed global twist in the limit q ≡ |q| → 0 we study the effects of long waves
that are responsible for the long-range disorder. The extended low-temperature harmonic approximation of
Hamiltonian is then10

H0(q) =
J

2

∑
〈kl〉

(θk − θl + q · rkl)2 =
1
2
JN2a2q2 +H0, (2.41)

where the mixed term is zero because of periodic boundary conditions of the configuration θ:

J
∑
〈kl〉

(θk − θl) q · rkl = Jqxa
∑
rows

∑
columns

(θk − θl)︸ ︷︷ ︸
0

+Jqya
∑

columns

∑
rows

(θk − θl)︸ ︷︷ ︸
0

= 0.

The free energy of the harmonic approximation is

F0(q) = −T ln
∫
Dθ e−

H0(q)
T = F0(0) +

1
2
JN2a2q2. (2.42)

The extended (original, anharmonic) Hamiltonian is

H(q) =
∑
〈kl〉

[(J1 + J2)− J1 cos(θk − θl + q · rkl)− J2 cos 2(θk − θl + q · rkl)]. (2.43)

The free energy to the 1st order in (H −H0)/T is then

F = −T ln
∫
Dθ e−

H(q)
T = −T ln

∫
Dθ e−

H0(q)
T

(
1− H(q)−H0(q)

T

)
= F0(q) + 〈H(q)−H0(q)〉0 , (2.44)

where 〈X〉0 is the thermal average of the quantity X according to H0,11

〈X〉0 =
∫
Dθ X(θ) e−

H0
T∫

Dθ e−
H0
T

. (2.45)

Applying the equipartition theorem on the extended Hamiltonian approximation Eq.(2.41) we easily
obtain12

〈H0〉0 =
N2T

2
, and 〈H0(q)〉0 =

N2T

2
+

1
2
JN2a2q2. (2.46)

We need to derive the relation for 〈H(q)〉0,

〈H(q)〉0 =
∑
〈kl〉

[(J1 + J2)− J1 〈cos(θk − θl)〉0 cos(q · rkl)− J2 〈cos 2(θk − θl)〉0 cos(2q · rkl)], (2.47)

where the terms 〈sin(θk − θl)〉0, resp. 〈sin 2(θk − θl)〉0 are trivially 0 from the symmetry of bond energy
e. From the spin-wave low-temperature theory we get 〈cos(θk − θl)〉0 = 1 − T

4J to the 1st order in T , and
〈cos 2(θk − θl)〉0 = 1− T

J . Inserting these relations into the last formula and using J1 + 4J2 = J , and J1 = jJ
we obtain

〈H(q)〉0 =
N2T

2
+

1
2
JN2a2q2

[
1− 4− 3j

4
T

J

]
(2.48)

Inserting Eq.(2.46) and Eq.(2.48) into Eq.(2.44) and reorganizing we get

F (q) = F (0) +
1
2
JN2a2q2

(
1− 4− 3j

4
T

J

)
. (2.49)

Analogical to the mechanical modulus in the mechanics of of continuum we may define the helicity modulus
Υ of a square lattice with n ≡ N2 sites and lattice constant a as

Υ =
1

N2a2

∂2F

∂q2

∣∣∣∣
q=0

, (2.50)

10The concept is that the solution θ satisfies periodic boundary conditions, but the externally imposed global twist q appears
in the Hamiltonian.

11Note, that the thermal average of X according to H0(q) is the same as 〈X〉0.
12It is also possible to verify the result within the spin-wave theory.
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where F is the free energy of the lattice and q = |q| is the magnitude of gradient q of externally imposed
global twist [6].

The interpretation of the formula is that the coupling constant J is effectively renormalized in the presence
of long-wave spin waves as follows,

J 7→ J ′ ≡ J
[
1−

(
1− 3j

4

)
T

J

]
. (2.51)

Thus the Hamiltonian for continuous model Eq.(1.6) is in the presence of spin waves effectively equal to

H −Hground =
J ′

2

∫
d2r [∇θ(r)]2 (2.52)

and that is the Hamiltonian for which we have to derive the KT equations.

2.5 Renormalization of J due to vortex unbinding
According to [7], the helicity modulus Υ defined in Eq.(2.50) is identical with the K(r → ∞) defined in
Eq.(2.22),

Υ(j, T ) = K(j, T, r →∞). (2.53)

Thus, we have 2 sources of J renormalization. Since the KT theory is harmonic, it is reasonable to
renormalize the coupling J first due to the anharmonicity and then to use the renormalised J ′ as an input
for the KT theory. Thus, the KT renormalization due to the vortex–anti-vortex pair unbinding13 involves
solving the KT equations Eq.(2.27) with initial conditions

K(s = 0) = K0 =
J ′

T
, y(s = 0) = y0 = e−

µ′
T , (2.54)

where the µ′ is the chemical potential computed with the the renormalized J ′. However, for j 6= 0, 1
it remains unclear how to compute the contribution of the nearest neighbourhood since we do not know
from the renormalization due to anharmonicity how is renormalized the J1-interaction and J2-interaction
separately.

We have compared the twice renormalized J , firstly due to anharmonicity and secondly due to vortex–
anti-vortex pair unbinding, for j = 1 with the Υ obtained from a Monte Carlo simulation; see Fig.2.7.

Figure 2.7: Comparison of the twice renormalized J as a function of T (called Theoretical prediction), i.e. K(j =
1, T, r ∼ 250 � 1), and the Υ resulting from numerical experiments to be described later (on a lattice with linear
size N = 256); for j = 1. The line 2T

π
shows the predicted universal jump of helicity. The dotted line J − T

4
is the

renormalized J ′ due to anharmonicity.

13For half-vortex–anti-half-vortex pair unbinding similarly, only using the equations Eq.(2.37) and initial conditions Eq.(2.38).
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Chapter 3

Monte Carlo simulation

The system of our interest is the lattice of N×N spins at a defined temperature. The probability distribution
is given by the Boltzman distribution p(θ) = 1

Z e−
E(θ)
T . An ideal algorithm that would compute averages of

physical quantity x of the lattice at defined temperature should construct all possible states θ of the lattice,
measure the quantity x(θ) and compute average 〈x〉 =

∑
θ p(θ)x(θ). For most systems – and our lattice is

no exception – this straightforward method is not executable, because the number of all states is huge or
infinite.

A solution may be an randomized (Monte Carlo, shortly MC) algorithm that would construct randomly
chosen configurations from the space of all possible states with relative probabilities in consensus with the
Boltzman distribution, which means pa

pb
= e

Eb−Ea
T for any 2 states a and b. I will prove that an algorithm

producing a chain of configurations with following properties will in limit of infinite number of steps generate
states with appropriate relative probabilies:

• The algorithm generates next configuration randomly from the current state.

• The algorithm is ergodic, i.e. can reach any of all possible states of the physical system.

• The algorithm satisfies condition

p(b→ a) = e
Eb−Ea
T p(a→ b), ∀a, b, (3.1)

where p(a→ b) is the probability of generating configuration b from a in a single step.

Proof follows [8]: The space of all possible configurations θ is in practice always finite.1 I choose two
arbitrary states a and b. Since the algorithm is ergodic, there must exist sequences S[k] of states a ≡ C0 →
C1 → C2 → . . .→ Ck ≡ b for that p(Ci → Ci+1) > 0 for i = 0, 1, ..., k− 1.2 We choose the shortest sequence.
If there are more sequences of the smallest length, then we choose arbitrarily any of them. We denote the
energy differences, ∆Ei ≡ Ei − Ei−1. The ratio Q′ba of probability of changing state b into a according to
the chosen sequence, and the probability of the reverse process is then

Q′ba =
pS[k](b→ a)
pS[k](a→ b)

=
∏n
i=1 p(Ck → Ck−1)∏n
i=1 p(Ck−1 → Ck)

=
k∏
i=1

p(Ck → Ck−1)
p(Ck−1 → Ck)

=
k∏
i=1

exp
(

∆Ei
T

)
= exp

(
Eb − Ea

T

)
.

The ratio Q′ba does not depend on the chosen sequence S[k]. Therefore the ratio Qba = pk(b→a)
pk(a→b) of probability

of changing state b into a in an arbitrary sequence of length k, and the probability of the reverse process is
the same, e

Eb−Ea
T .

Now, consider a large ensemble of systems. Let na be the number of systems of the ensemble in the state
a. The net number of systems moving in k steps from the state a to b is

n
(k)
a→b = na pk(a→ b)− nb pk(b→ a) =

[
na − nb e

Eb−Ea
T

]
pk(a→ b). (3.2)

1Also our lattice of N ×N spins is in the computer realization finite space.
2The condition Eq.(3.1) quarantees for such a sequence S[k] that there is a non-zero probability of the reverse process.
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We see that for the arbitrarily chosen states a and b, if nanb < e
Eb−Ea
T , on the average more systems move from

state b to a. Thus the ensemble of systems must approach the canonical distribution.
In reality, the program does not generate every state. The convergence of the averages is also delicate.

Usually, the simulation runs from an initial state that might be quite improbable. The time (number of
necessary steps) to get into the highly probable configurations is called thermalization time and the measure-
ments during this time are not included in the calculation of averages. We determine the thermalization time
by measuring all interested quantities and by inspecting whether they are stabilized or not. There is another
complication called ergodicity breaking, when there are more regions with highly probable states separated3
by regions with highly improbable states.

3.1 The Metropolis algorithm
The Metropolis algorithm [8] is a randomized algorithm that enables the simulation of thermal equilibrium
of our lattice. Each step consists of

1. Choosing randomly one site k of the lattice.

2. Choosing randomly an angle α ∈ [0, π).

3. Calculating the energy difference ∆E = E∗ −E, where E denotes the actual energy and E∗ stands for
a configuration, in which the spin at site k is flipped around an axis defined by the angle α.4

4. If ∆E < 0, then we accept the new configuration. Otherwise, we accept it with probability exp(−∆E
T ) <

1.

It is obvious that our algorithm is ergodic and that new configurations are generated randomly. We show
that for the probability of changing state b into a in a single step and for the backwards process the condition
Eq.(3.1) holds,5

p(b→ a)
p(a→ b)

=
P (k, α) exp(−H(∆E)∆E

T )

P (k, α) exp(−H(−∆E)∆E
T )

= exp
(
− [H(∆E) +H(−∆E)]∆E

T

)
= exp

(
Eb − Ea

T

)
,

where P (k, α) is the probability of choosing the site k and the angle α, and H(x) is the Heaviside function.6
The length of the thermalization period depends on the lattice size, temperature T , coupling parameter

j, as well as on the initial configuration. It is strongly recommended to thermalize gradually, otherwise it
is much more probable that metastable configurations appear – the reason for that is that Metropolis’ steps
act only locally – the Metropolis algorithm is applicable also to the study of locally stable configurations.

3.2 The Wolff algorithm
The Wolff algorithm [9] flips whole clusters of spins. Its main benefits are quicker thermalization and shorter
autocorrelation times. The random step scheme consists of these phases

1. Choosing randomly one site k of the lattice, we will call it the seed.

2. Choosing randomly an angle α ∈ [0, π).

3. Flipping the spin at the site k of the lattice around the axis α, that means θ∗k = 2α− θk.

4. Flip each unflipped neighbour i of the site k with probability P (k, i) and repeat this procedure for the
site i.

3Separated in terms of the algorithm step, i.e. the program cannot change configuration from one region with probable states
into configuration of the another region with probable states directly, only “crossing” improbable regions. An example might be
the Ising model simulated by Metropolis algorithm (see Sec.3.1) at low temperatures. There are 2 highly probable states (all
spins up or down). The probability of flipping all spins by the algorithm is effectively zero. Thus the ergodicity is broken.

4The angle of the flipped spin is then θ∗i = 2α − θi. Note that the energy difference may arise only from changes of bond
energies between the spin k and its neigbours.

5For configurations that differ in more than one spin it is trivial.
6The Heaviside function is defined by the formula H(x) =

1+sgn(x)
2

.
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The set of all flipped spins in a single step is called cluster. The probability of flipping a neighbour i of site
k is

P (k, i) = 1−min
{

1, exp
[
e(θk − θi)− e(θ∗k − θi)

T

]}
, (3.3)

where e(θk − θl) is the energy of a single bond between spins k and l defined in Eq.(1.5).7

It is again obvious that the algorithm is ergodic and that it generates new configurations randomly. We
have to prove that for any two configurations a and b the equation p(b→ a) = e

Eb−Ea
T p(a→ b) is valid. We

will do it in following 3 steps:

• First of all, we realize that the probability of choosing certain angle α is the same for the forward as
for the backward process. The probability of choosing a particular seed is 1

N2 .

• Secondly, we show that the ratio of the probability of flipping a certain cluster S that has grown from
a particular seed site in an exactly defined way (r) around defined axis and probability of the reverse
process8 is exp E−E∗

T where E −E∗ stands for minus energy difference of the configurations; E stands
for the original energy of a and E∗ is the energy of the state b with flipped cluster S.

We need to analyze the process of increasing the cluster. A spin may be added to the cluster visiting
from 4 neighbours. We can not exclude that it will be added to the cluster after some unsuccessful
attempts from other sides. We will assume that the algorithm is deterministic concerning the rules of
visiting the neighbours. That quarantees that for growing the cluster in a defined way, we need to ask
for the same probabilities P (k, i). The probability of flipping a neighbour i of a flipped spin k in the
forward process is

Pforw(k, i) = 1−min
{

1, exp
e(θk − θi)− e(θ∗k − θi)

T

}
. (3.4)

In the reverse process, the probability of flipping a neighbour i ∈ S (i.e. from the cluster, flipped in
forward process) of a spin k in the cluster (allready twice flipped) is

Prev(k, i) = 1−min
{

1, exp
e(θ∗k − θ∗i )− e(θk − θ∗i )

T

}
. (3.5)

Since θ∗k− θ∗i = θi− θk and (θ∗k)∗ = θk and e(θk− θl) = e(θl− θk), we see that the probabilities Eq.(3.4)
and Eq.(3.5) are the same.

The situation changes, when we look at the probability not to flip in the reverse process a neighbour i
outside of the cluster (visiting from a already twice flipped spin inside of S)

1− Prev(k, i) = min
{

1, exp
e(θ∗k − θi)− e(θk − θi)

T

}
. (3.6)

Altogether, we may write for the ratio of probabilities of flipping and deflipping the cluster S that has
grown in the same way (r)

p
(r)
forw

p
(r)
rev

=

∏
〈ki〉,k∈S,i/∈S [1− Pforw(k, i)]∏
〈ki〉,k∈S,i/∈S [1− Prev(k, i)]

=
∏

〈ki〉,k∈S,i/∈S

min
{

1, exp e(θ∗k−θ
∗
i )−e(θk−θ∗i )
T

}
min

{
1, exp e(θ∗k−θi)−e(θk−θi)

T

} ,
=

∏
〈ki〉,k∈S,i/∈S

exp
e(θk − θi)− e(θk − θ∗i )

T
= exp

[
−E

∗ − E
T

]
,

because the term e(θk − θi)− e(θk − θ∗i ) is the minus energy change in bond between sites i and k and
the energy of the configuration with flipped cluster S differs only in the bonds between spins inside of
the cluster and spins outside of it.

7Note that the bond energy e is a symmetric function; it is important for appropriate functionality of this implementation of
Wolff’s algorithm.

8The reverse process does mean that the seed site is the same, the axis is the same and the way (r) of growing of the cluster
is the same. The only difference is that we are flipping the state b instead of a.
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• Lastly, we show that the ratio of probability of flipping certain cluster S in any possible way around
defined axis and probability of the reverse process is exp E−E∗

T . Because the ratio of flipping a cluster
and deflipping the same cluster in the same way does not depend on the details of the growth of the
cluster, we can formally write

prev
pforw

=
∑
r p

(r)
rev∑

r p
(r)
forw

=

∑
r p

(r)
forw exp E∗−E

T∑
r p

(r)
forw

= exp
E∗ − E
T

,

where the sum is over all possible ways (r) of growth of the specified cluster S.

An important difference between the Metropolis and the Wolff algorithm apart from time-efficiency is
also the more variable step of the Wolff algorithm, which minimizes the possibility of ergodicity breaking.

3.3 Autocorrelation time and error of the mean

For each measurable quantity x we have a sequence {xi}Mi=1 of measured values and we may define the
autocorrelation function

Rx(τ) =
1

(M − τ) s2
x

[
M−τ∑
i=1

xixi+τ − (M − τ) 〈x〉[1,M−τ ] 〈x〉[τ+1,M ]

]
, (3.7)

where τ ∈ Z+
0 and τ < M . The denominator in the front ensures that |Rx(τ)| ≤ 1, since sx is the sample

standard deviaton of the measurements of x,

s2
x =

1
M

M∑
i=1

x2
i − 〈x〉

2
[1,M ] .

The notation 〈x〉[i,j] stands for the mean value of a sequence of measurements of x starting with index i and
ending with j. If we denote ∆i = xi − 〈x〉[1,M−τ ] and ∆′i = xi − 〈x〉[τ+1,M ], then we obtain

Rx(τ) =
1

(M − τ) s2
x

M−τ∑
i=1

∆i∆′i+τ .

Even for M
τ ≈ 100 is the difference between 〈x〉[1,M−τ ] and 〈x〉[1,M ] important and cannot be neglected.

We assume that the autocorrelation function is Rx(τ) = e−τ/T ; a real example of autocorrelation function
is shown in the figure Fig.3.1. Then the average of the autocorrelation for all pairs of measured points is

ρ =
2

M(M − 1)

M−1∑
i=1

M∑
j=i+1

Rx(j − i) ≈ 2T
M
,

where we considered T � M . According to [10], the standard deviation of the mean 〈x〉 ≡ 〈x〉[1,M ] is

s〈x〉 =
√

1+(M−1)ρ
M(1−ρ) sx ≈

√
1+2T
M sx.9

3.4 Measured observables

In our simulation we compute after every Q random steps10 these quantities

9Another simple argument might be following: 2 measurements with autocorrelation Rx = 0.1 might be considered as
almost independent. The number of effectively independent measurements is then roughly M

τx
, where τx is the time for that

Rx(τx) ≈ 0.1. Then, the standard error of the mean 〈x〉 is approximately s〈x〉 ≈
√
τx
M
sx.

10The value of Q is set appropriate to the autocorrelation times of the measured quantities.
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Figure 3.1: Plot of autocorrelation function Rm(τ) for the parameter m (see Sec.3.4). The data was obtained on
the lattice 256 × 256 at temperature T = 0.0442 J with 250 MC steps between each measurement. The numerical
experiment was performed by the Wolff algorithm.

• Energy, ’derivative’ of energy and ’second derivative’ of energy :

E = −J
∑
〈kl〉

[j cos(θk − θl) + j2 cos 2(θk − θl)] , (3.8)

E(1) = J
∑
〈kl〉

[j sin(θk − θl) + 2j2 sin 2(θk − θl)] , (3.9)

E(2) = J
∑
〈kl〉

[j cos(θk − θl) + 4j2 cos 2(θk − θl)] , respectively. (3.10)

• Magnetization in direction x and y:

Mx =
∑
k

cos θk, and My =
∑
k

sin θk, respectively. (3.11)

• ’Nematic magnetization’ in direction x and y:

Nx =
∑
k

cos 2θk, and Ny =
∑
k

sin 2θk, respectively. (3.12)

• Vorticity V : the total number of vortices with positive charge per spin. Vortex detection is performed
at each plaquette – an elementary square with 4 corner lattice sites – counting the angle differences in
a defined way (anti-clockwise) around the square [11]. The angle differences have to lie within (−π, π].
The possible results of the sum of differences are 0 or ±2π; the result ±2π is interpreted as a vortex,
or an anti-vortex in the plaquette. The vorticity of a bigger area is simply the sum of the vorticities
of its plaquettes. Since the whole lattice has periodic boundary conditions, we can conclude that the
number of negative vortices must be the same as the number of the positive vortices. See Fig.3.2.

• Half-vorticity VH : the total number of half-vortices with positive charge per spin. A half-vortex is for
j = 0 analogue of the vortex for j = 1. It is detected using the same technique as vortex, the only
difference is that we sum angle differences of unoriented lines instead of oriented ’arrows’.11 Making
use of the argument about similarity (see Sec.1.2.1) it can be easily shown that the average vorticity
for j = 1 at temperature T is the same as the half-vorticity for j = 0 at temperature T

4 . See Fig.3.2.

• Walls W : the total number of walls between pairs of spins per spin. We say that between a neighbouring
pair of spins k, l there is a wall, if |θk − θl| ≥ arccos j

j−1 , because the force between the spins acts then
in the direction to make them opposite to each other.12 See Fig.3.2.

11The angle differences have to lie within (−π
2
, π

2
]. The sum around a plaquette is then 0 or ±π. The result ±π is interpreted

as a half-vortex with positive, or negative charge.
12For j ≥ 0.5 there cannot exist any wall.
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• Order parameter m: The program tries to colorize the spins with 2 colors, so that any 2 neighbouring
spins have the same color if and only if there is no wall between them. If a configuration of spins can
be uniformly colorized, then the parameter m is defined m = |N1−N2|

N2 , where N1, N2 are the numbers
of spins colorized with the first, and the second color. See Fig.3.2.

Figure 3.2: Left: Example of vortices identification; vortices are displayed as circles and anti-vortices as squares. In
the middle: Example of half-vortices identification; half-vortices are represented by circles and anti-half-vortices by
squares. Right: A colorized configuration; the walls are in the picture presented as lines between spins.

3.5 Specific heat
The specific heat (referred to also as heat capacity) of a N ×N square lattice is

c =
1
N2

∂〈E〉
∂T

. (3.13)

A straightforward way to determine c is to measure precisely 〈E(T )〉 and 〈E(T + ∆T )〉 and to estimate
c(T + 1

2∆T ) ≈ 1
∆T [〈E(T + ∆T )〉 − 〈E(T )〉]. Another possible method is to measure the square of the energy

fluctuations, because

c =
1
N2

∂〈E〉
∂T

=
1
N2

∂

∂T

[
1

Z(T )

∑
i

Eie−Ei/T
]

=

〈
E2
〉
− 〈E〉2

N2T 2
, (3.14)

where
〈
E2
〉
−〈E〉2 is the square of the standard deviation of energy. The comparison of the evaluated specific

heat calculated from differences of energy and from fluctuations of energy is shown in the figure Fig.3.3.
If we want to compare the graphs of specific heat for various j, it is reasonable to normalize the specific

heat, so that ∫ ∞
0

dT C(T ) = 1.

The normalized specific heat C is then

C(T ) =
c(T )∫∞

0
dT ′ c(T ′)

=
c(T )

Espin(T →∞)− Espin(T → 0)
=

c(T )
0 + 2J(j + j2)

=
2c(T )

J(1 + 3j)
. (3.15)

3.6 Helicity modulus
The helicity modulus Υ was defined in Sec.2.4, see Eq.(2.50), as

Υ =
1

N2a2

∂2F

∂q2

∣∣∣∣
q=0

,
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Figure 3.3: The comparison of the evaluated specific heat calculated from differences of energy and from fluctuations
of energy. Computed for j = 0.06 and the lattice size N = 128.

where F is the free energy of the lattice and q = |q| is the magnitude of gradient q of externally imposed
global twist [6]. The canonical partition function of a lattice without externally imposed global twist is

Z0 =
∫
Dθ exp

[
−
∑
〈kl〉 e(∆θkl)

T

]
, (3.16)

where ∆θkl is a short denotation for θk − θl. The canonical partition function for q 6= 0 expanded to the 2nd

order of q is

Z(q) =
∫
Dθ exp

[
−
∑
〈kl〉 e(∆θkl + q · rkl)

T

]
,

=
∫
Dθ exp

−∑
〈kl〉

e(∆θkl) + e′(∆θkl) q · rkl + 1
2e
′′(∆θkl)(q · rkl)2

T

 ,
= Z0

〈
exp
−1
T

∑
〈kl〉

e′(∆θkl) q · rkl +
1
2

∑
〈kl〉

e′′(∆θkl)(q · rkl)2

〉
0

,

= Z0

1− 1
T

∑
〈kl〉

〈e′(∆θkl)〉0 q · rkl −
1

2T

∑
〈kl〉

〈e′′(∆θkl)〉0 (q · rkl)2 +
1

2T 2

〈∑
〈kl〉

e′(∆θkl) q · rkl

2〉
0

 ,
where rkl ≡ rk − rl is the vector connecting the nearest neighbours. Now, we can use the symmetry of the
bond energy e(∆) = e(−∆) ⇒ e′(∆) = −e′(−∆), therefore 〈e′(∆θkl)〉0 = 0. Free energy to the 2nd order in
q is then

F (q) = −T lnZ(q) = F0 +
q2

2

∑
〈kl〉

〈e′′(∆θkl)〉0 (n · rkl)2 − q2

2T

〈∑
〈kl〉

e′(∆θkl) n · rkl

2〉
0

, (3.17)

where n is the unit vector in the direction q defined by q = qn. If we choose n = 1√
2
(1, 1) then the helicity

modulus equals

Υ =
1

2N2

〈
E(2)

〉
− 1

2N2T

〈
[E(1)]2

〉
, (3.18)

where E(1) and E(2) are defined in Sec.3.4.
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3.7 Susceptibilities
If M is an extensive quantity and B is field conjugate to M , then the field M contributes to the energy with
the term −MB. The partition sum is therefore

Z(B) =
∑
n

e−
En−MnB

T (3.19)

and the average M is

〈M(B)〉 =
1

Z(B)

∑
n

Mne−
En−MnB

T . (3.20)

The susceptibility is

χ ≡ 1
N2

∂〈M〉
∂B

∣∣∣∣
B=0

=
1

N2T

[〈
M2
〉
B=0
− 〈M〉2B=0

]
, (3.21)

where 〈X〉B=0 stands for the average value of the quantity X for B = 0. The susceptibility corresponding to
magnetization Mx is then χ1,x, and for My it is χ1,y. We calculate the magnetic susceptibility as13

χ1 =
χ1,x + χ1,y

2
=

1
2N2T

[〈
M2
x

〉
+
〈
M2
y

〉
− 〈Mx〉2 − 〈My〉2

]
. (3.22)

The nematic susceptibility is then similarly

χ2 =
1

2N2T

[〈
N2
x

〉
+
〈
N2
y

〉
− 〈Nx〉2 − 〈Ny〉2

]
. (3.23)

In the magnetic phase, both – the magnetic and the nematic – susceptibilities diverges with N → ∞.
In the paramagnetic phase are both susceptibilities extremely local, and thus insensitive to the finite-size
scaling.14 In the nematic phase is due to the loss of spin-orientation order the magnetic susceptibility local
and thus independent on N . Surely, the nematic susceptibility diverges with N →∞ in the nematic phase.

Figure 3.4: Left: Typical histogram of susceptibility in the ordered phase concerning the specific susceptibility; namely
it is histogram for χ∗2 computed for N = 64, and j = 0.02, at T = 0.1 J . Right: Typical histogram of susceptibility
in the disordered phase concerning the specific suscetibility; it is the histogram for χ∗1 computed for N = 64, and
j = 0.02, at T = 0.1 J .

3.8 Identification of the KT phase transition
According to [12], the theoretical helicity modulus Υ∗N (T ) of a lattice N ×N at temperature T → T−2 in the
limit for large N is

Υ∗N (T ) = Υ∞(T )
[
1 +

1
2

1
lnN + C

]
, (3.24)

13The terms 〈Mx〉2, and 〈My〉2, may be neglected in the formula for the magnetic susceptibility, because the problem has
rotational symmetry – i.e. if we rotate each spin by a fixed angle α, then the energy (and thus also the probability of occurence)
will not change. I have checked that the terms 〈Mx〉2, and 〈My〉2 are always of smaller order than the terms

〈
M2
x

〉
, and

〈
M2
y

〉
.

The magnetic susceptibility with neglected terms 〈Mx〉2, and 〈My〉2 is then χ∗1 = 1
2N2T

〈
|M|2

〉
.

14The reason is following: the lattice N×N spins has n ≡ N2 spins. Thus, in the disordered paramagnetic phase the magnitude
of the total magnetization |M| is proportional to

√
n, where we have made use of random walk. Since the susceptibility is

χ∗1 = 1
2nT
〈|M|〉2, it is clear that in the paramagnetic phase are both susceptibilities independent on n.
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where C is a constant, T2 is the critical temperature of the KT phase transition and Υ∞(T ) is the universal
jump of the helicity modulus in an infinite lattice. For the KT phase transition due to vortex unbinding is
the jump equal to 2T

π , and for the KT phase transition due to half-vortex unbinding it is 8T
π . The formula

Eq.(3.24) follows the KT equations Eq.(2.27) (for half-vortex unbinding Eq.(2.37)) analysed near the fixed
point, using the asymptotic solution Eq.(2.30) (for half-vortices: Eq.(2.39)).15 One possible way to determine
the transition temperature T2 is

1. to numerically compute ΥN (T ) for M different (large) N

2. fit the constant C and find the minimum of

δ2 =
1
M

M∑
i=1

[
Υ∗Ni(T )−ΥNi(T )

]2
, (3.25)

where δ will be referred to as the root-mean-square error of the fit; the values ΥN (T ) are results of
numerical experiments. With the scaling formula it is also possible to verify the value of the universal
jump when we do a fit with 2 fitting parameters: the constant C and the universal jump Υ∞.

Another method is to use the finite-size scaling of the susceptibilities. Spin-wave low-temperature theory16
predicts that the magnetic susceptibility χ1 is proportional to N2− T

2πJ , and nematic susceptibility χ2 is
proportional to N2− 2T

πJ [11]. At the transition temperature the coupling constant J is due to renormalization
(see Sec.2.4) effectively equal to the jump of the helicity modulus Υ. Thus we obtain for the transition
temperature the finite-size scalings χ1 ∝ N7/4, and χ2 ∝ N4/4 for the KT phase transition due to vortex
unbinding. For the KT phase transition due to half-vortices we obtain χ2 ∝ N7/4.17 According to [13],
the drawback of these susceptibility scalings is that the ansatz is too simple – the helicity modulus Υ in a
finite lattice is larger than the universal jump at T2 (see the 1st order prediction is Eq.(3.24)) – therefore this
method is less accurate.

15We may consider that by computing Υ on a lattice N ×N we compute K[ln(cN)]. Then the constant C is ln c.
16The spin-wave low-temperature theory is calculated using the low-temperature harmonic Hamiltonian Eq.(1.4).
17For the magnetic susceptibility we obtain χ1 ∝ N31/16, but the finite-size scaling for the magnetic susceptibility is unusable

since the nematic phase is concerning the J1-interaction already a high-temperature (disordered) phase.
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Chapter 4

Results of numerical experiments

The numerical results were obtained on square lattices N × N with periodic boundary conditions, mostly
using Wolff’s algorithm and for linear dimensions N = 32, 64, 128, 256 and 512. The results were compared
with the results obtained by the Metropolis algorithm on smaller lattices N = 32, 64. Typically, a numerical
experiment follows these steps:

1. Creating an initial configuration. This can either be a random configuration, when cooling down from
high temperatures; or a frozen configuration, ∀i : θi = 0 when heating up from low temperatures.

2. Thermalization for a selected temperature. This includes Monte Carlo (MC) steps without measure-
ments counting into the averages. The number of necessary MC steps depends mostly on the lattice
size and the temperature step.1 We used overestimation of necessary MC steps for energy thermaliza-
tion. Typically, for convenient temperature steps ∼ 0.05J and Wolff’s algorithm we used the following
numbers of MC steps: ∼ 50000 for N ≤ 128; ∼ 100000 for N = 256; ∼ 250000 for N = 512.

3. Measurements: in this step the program executes one measurement of the observed quantities after k
MC steps. We can regulate the (in)dependency of measured quantities with the number k – higher k
provides for lower values of autocorrelation function Rx(τ) (see section Sec.3.3) for measured quantity
x and therefore increases the number of effectively independent measurements of x.

4. Temperature change and back to step 2.

The number of measurements was usually 20000 − 40000 and on smaller lattices up to 100000 to provide
small error bars of intensive quantities; on the largest lattice 512 × 512, the number of measurements was
sometimes only 10000. The results obtained by heating the lattice from low temperatures (initial phase was
totally ordered) compared with the results obtained by cooling down from high temperatures (initial phase
disordered) are identical within the error bars when the temperature changes are at least one order smaller
than typical temperature difference on the temperature scale (e.g. the temperature region of a particular
phase) and the time for thermalization is sufficient.

4.1 Numerical results for j = 1

For the XY model we know that at T2 = 0.89294(8) [14] there occurs a phase transition of the KT type. The
energy (and heat capacity) should be a C∞ function. The graphs of energies per spin for N = 32, 64, 128, 256
are almost identical. A small difference is observable in the graph of the heat capacity, where the peak moves
with increasing N leftwards and drops slightly. At temperatures above T2 the vorticity grows rapidly. The
graphs of vorticity as a function of temperature are identical for various lattice sizes N , therefore I plot the
vorticity only for N = 64. The graph of the helicity modulus ΥN (T ) for various N reveals evidently the
tendency that ΥN (T ) is at the predicted transition temperature T2 steeper for larger N – see Fig.4.1.

From the graph of the helicity modulus as a function of T it is possible to determine the temperature
point closest to T2 using the finite-size scaling (see Sec.3.8); in our case the lowest root-mean-square error δ is

1Since a Wolff’s MC step has impact on many spins, the number of necessary MC steps for the Metropolis algorithm is larger
of the order of the Wolff’s cluster area size.
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realized for T2 = 0.89 J ; see Fig.4.2. Another method to determine T2 is to find the intersection of χ1/N
7/4,

or the intersection of χ2/N
4/4, for various N . Both intersections lie little above the known estimate of TC ,

at T ≈ 0.905 J and at T ≈ 0.91 J , respectively; see Fig.4.3. Results of all three scalings are consistent with
known results and thus we have a successful test of the methods and numerical computation itself.

Figure 4.1: Graphs of the energy E(T ), heat capacity c(T ), and vorticity V (T ) for j = 1 and N = 64. Below there is
the plot of the helicity modulus ΥN (T ) and a detail of the specific heat peak for j = 1 and N = 32, 64, 128, 256. In
the graph of the helicity modulus, there is also the line 2T

π
showing the universal jump, and the line J − T

4
displaying

the renormalization of J due to anharmonicity. The lines between the measured points are only guides for eyes – as
it is each time in this paper. The error bars are smaller than the symbols showing the measured values – as it is each
time in this paper unless the error bars are displayed.

Figure 4.2: Detail of the graph of the helicity modulus ΥN (T ) for j = 1 and lattice sizes N = 32, 64, 128, 256. The
plot also includes the prediction of the universal jump 2T

π
and the root-mean-square error δ of the 1-parametrical fit

(with fixed jump 2T
π
) of the helicity modulus (see Sec.3.8).
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Figure 4.3: Graphs of the magnetic and nematic susceptibilities χ1(T ) and χ2(T ) for j = 1 and N = 32, 64, 128, 256
in logarithmic scale vs. temperature. The lower pictures show the finite-size scaling of χ1(T ) and χ2(T ) to estimate
the phase-transition temperature for j = 1.

4.2 Numerical results for j = 0

If we take into account the equation describing the averages of analogous functions Eq.(1.14), we obtain
following relations

• for energy
〈
E[0](T )

〉
= 1

4

〈
E[1](4T )

〉
, thus the specific heat is c[0](T ) =

∂〈E[0]〉
∂T = c[1](4T ),

• for helicity modulus Υ[0](T ) = Υ[1](4T ),

• for susceptibility χ[0]
2 (T ) = 4χ[1]

1 (4T ),

• for half-vorticity: mean half-vorticity VH for j = 0 at temperature T is the same as mean vorticity V
for j = 1 at 4T .

Numerical results for energy E(T ), specific heat capacity c(T ), half-vorticity as a function of T , helicity
modulus Υ(T ) and nematic susceptibility χ2(T ) are, according to the previous paragraph, identical within
the error bars with the results for j = 0.

The vortex identification is totally irrelevant, because the orientation of spins is random and an arbitrarily
small direction variance of the spins might cause a positive identification of a vortex at all temperatures. The
vorticity is almost constantly 17%. The magnetic susceptibility is the same for all inspected lattice sizes
(N = 32, 64, 128, 256), approximately χ1 ≈ 1

2T ; see Fig.4.4.
The KT phase transition temperature is T2(j = 0) = T2(j = 1)/4 = 0.223 J .

4.3 Numerical results for j = 0.02

The case j = 0.02 is our representant of sufficiently small j from the estimate in Sec.1.2.3. According to our
hypothesis, there should exist 3 phases and 2 phase transitions. We may consider the model with j = 0.02
as a small modification of the case j = 0; for better comparison we will use units J2 independent on j. The
graph of energy per spin for j = 0.02 compared with the graph of energy per spin for j = 0 suggests a phase
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Figure 4.4: For j = 0, the magnetic susceptibilities χ1,N (T ) are the same for N = 32, 64, 128, 256; χ1 ≈ 1
2T

.

transition at T ≈ 0.05 J .2 The graph of the magnetic susceptibility shows that below T ≈ 0.05 J there exists
a magnetic phase. The graphs of the nematic susceptibility and the half-vorticity show that above T ≈ 0.05J
there exists a nematic phase (as for j = 0) up to T2 ≈ 0.22 J . The comparison of graphs of the helicity
modulus, the energy and the nematic susceptibility for j = 0.02 and for j = 0 clearly reveal that the phase
transition at T2 remained without changes.

Figure 4.5: Comparison of energies per spin between j = 0.02 and j = 0 in units 4J2 for lattice N = 64. Graph of
half-vorticity for j = 0.02, N = 64 as a funtion of temperature. The comparison of helicity modulus between j = 0.02
and j = 0 for N = 64 with displayed renormalization due to anharmonicity for j = 0.02 and with the universal
jump 8T

π
. Graphs of the magnetic susceptibility χ1,N (T ) and the nematic susceptibility χ2,N (T ) for j = 0.02 and

N = 64, 128, 256, 512.

Representative configurations3 near the critical temperature T1 ≈ 0.045J show a pattern known from the
2The graph of energy per spin comparing the cases j = 0 and j = 0.02 is drawn in natural units 4J2. The unit J is for j < 1

equivalent to J = 4J2
1−j .

3The configurations were selected in that way that their parameter m is approximately equal to the average 〈m〉 for the
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Ising model [15] – see Fig.4.6.

Figure 4.6: Representative configurations for j = 0.02 and N = 64 when passing the Ising phase transition.

The upper phase transition at T2 ≈ 0.22 J was investigated using the finite-size scaling of the helicity
modulus, and of the nematic susceptibility. The temperatures T2(j = 0.02) of the phase transition determined
from the helicity and the nematic susceptibility are consistent, T2 ≈ 0.22J ; see Fig.4.7. According to [12], the

particular temperature.
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finite-size scaling formula Eq.(3.24) of the helicity modulus is in fact valid to extremely good approximation
down to small lattice sizes, in the model with j = 1 (and thus according to the similarity Sec.1.2.1 also for
j = 0). Therefore we have computed the helicity modulus (with high accuracy ±0.0001 J ; the number of
measurements was 5000000) for lattice sizes n = 16, 20, 24, 28, 32, 36, 40, 48 and done 2-parametrical fit of the
data for each inspected temperature point, see Fig.4.8. The universal jump in the helicity modulus is 8T

π
with tolerance ±6%.

Figure 4.7: Left: Graph of the helicity modulus for j = 0.02 and N = 32, 64, 128, 256 vs. temperature in detail. The
figure includes the mean-square error δ of the 1-parametrical fit of the helicity modulus and the universal jump 8T

π
.

Right: Graph of the scaled nematic susceptibility χ2/N
7/4 to estimate the phase-transition temperature T2(j = 0.02).

Figure 4.8: Graph of the universal jump and mean-root-square error of the 2-parametrical fit of the helicity modulus
ΥN as a function of temperature, fitted for N = 16, 20, 24, 28, 32, 36, 40, 48; j = 0.02.

The autocorrelation times exploded at the lower critical temperature T1. The temperature with the largest
autocorrelation time drifts slightly to low temperatures, like the peak of the heat capacity. For the largest
investigated lattice with N = 512 the critical temperature was T1 = 0.0449 J .

The heat capacity at the potentially Ising-like transition at T ≈ 0.045J grows for larger lattices. The peak
is localised at the same temperature as the steepest increment of the walls; see Fig.4.9. The heat capacity of
the Ising model at the critical temperature should be approximately A+B lnN , where A and B are constants
[16]. Therefore we also plotted the graph of the differential heat capacity cdiff(T ) ≡ c0.02(T )− c0(T ), where
cx(T ) is the heat capacity for j = x. The increments of the peaks for doubled N should be the same if
the transition would be Ising-like. The values do satisfy this criterion within the error bars. The critical
temperature T1 is estimated from the maximum of the heat capacity peak for the largest lattice with linear
size N = 512, T1 = 0.0449 J ; see Fig.4.10.
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Figure 4.9: Left: The graph showing the difference of energy per spin EN (T ) − E32(T ) close to T = 0.045 J for
j = 0.02 and N = 64, 128, 256, 512. Right: the normalized specific heat for j = 0.02 and N = 64, 128, 256 together
with the number of walls per spin for (for N = 64) and half-vorticity (for N = 128) as functions of temperature, both
for j = 0.02.

Figure 4.10: The differential heat capacity c0.02(T ) − c0(T ) for various lattice sizes N on a large scale and in detail
with error bars. The heat capacity c0.02(T ) is computed from fluctuations, the heat capacity c0(T ) is computed from
energy differences. The temperature scale is in units 4J2 = 0.98 J0.02.

I have also calculated the increase of entropy corresponding to the differential heat capacity

Sdiff =
∫ Tmax

0

cdiff(T ) dT
T

=
∫ Tmax

0

dEdiff

T
≈
∑
i

Ediff(Ti+1)− Ediff(Ti)
(Ti+1 + Ti)/2

, (4.1)

where Ti are examined temperature points. For the lattice with linear size N = 128 with an upper cut off
at Tmax = 0.30 J and about 60 (non-uniformly distributed) temperature points I obtained the increase of
entropy per spin Sdiff ≈ 0.714. The calculation for N = 64 with higher density of investigated temperature
points (about 120, again non-uniformly distributed) up to T = 0.50 J gives Sdiff ≈ 0.702 per spin. Both of
these values are close to the increase of entropy in the Ising model, ∆SIsing = ln 2 ≈ 0.693 and contribute to
verifying the expectation that the transition magnetic-nematic is of the Ising type.

If the parameter m (see Sec.3.4) is an order parameter (for N → ∞) and the phase transition at T1 ≈
0.045J is really of the Ising type, then the order parameter in the neighbourhood of T1 should be proportional
to (T1− T )1/8 for T < T1 and m ≡ 0 for T > T1.4 The values were fitted for T1 = 0.0449 estimated from the
heat capacity peak; see Fig.4.11.

4The last condition is for N →∞ satisfied because of the law of large numbers. According to the law of large numbers, for
temperatures T > T1, m2N (T ) = 1

2
mN (T ) should hold, which seems to be true.
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Figure 4.11: Graph of parameter m(T ) for j = 0.02 and N = 64, 128, 256, 512, including fit for the (possibly order)
parameter m with an Ising exponent, m ∝ (T1 − T )δ with δ = 1/8 and T1 = 0.0449 J .

4.4 Numerical results for j = 0.16

The model with j = 0.16 should represent the case without the nematic phase. The graph of energy E(T )
reveals only one region with higher heat capacity. The peak in heat capacity moves slightly towards lower
temperatures with increasing lattice size N , but does not grow.

Figure 4.12: Left: Graph of the energy E(T ) and the helicity modulus Υ(T ) for j = 0.16 and N = 64. The dotted
lines are the universal jump 2T

π
for the helicity and the prediction of Υ from J renormalization due to anharmonicity

(see Eq.(2.51). Right: Vorticity V (T ) and plots of the magnetic and nematic susceptibility, χ1(T ) and χ2(T ), all for
j = 0.16 and N = 64.

The phase transition was dealt with the same techniques as the KT phase transition for j = 1, using
the fit for helicity with the universal jump 2T

π and inspecting the intersections of χ1/N
7/4, and χ2/N

4/4.
The estimated phase-transition temperature is consistently T2 ≈ 0.287 J ; see Fig.4.13. The 2-parametrical
fit of the helicity modulus performed with values ΥN (T ) for N = 64, 128, 256, 512 at temperature points
T = 0.2850, 0.2865, 0.2875 J determines the universal jump between 1.45T

π and 2.9T
π .

4.5 The phase diagram

Our final effort was to construct the phase diagram in the space (plane) of parameters j and T ; see Fig.4.16.
The transitions for j = 0, 0.02, 0.16, 1 were studied intensively. For j = 0.04, 0.06, 0.10, 0.14 the transition
temperatures T2(j) were found by finite-size scaling of susceptibilities using only 2 lattice sizes N = 64, 128.
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Figure 4.13: Detailed graph of the helicity modulus with the root-mean-square-error δ of the 1-parametrical finite-size-
scaling fit, for j = 0.16. Lower graphs: determination of the transition temperature T2(j = 0.16) from the finite-size
scalings χ1/N

7/4, χ2/N
4/4 of the susceptibilities.

For j = 0.2, 0.3, ..., 0.9 the transition temperatures T2(j) were found roughly from the graphs of the magnetic
susceptibilities χ1(T ); the transition temperature T2(j) in units J rises approximately linearly with j from
T2(j = 0.16) ≈ 0.29 J up to T2(j = 1) ≈ 0.89 J .

The lower transition temperature T1(j) was determined from the peak of the specific heat. The estimate
of the magnetic-nematic phase transition temperature T1(j) outgoing from the conception of an Ising-like
phase transition seems to be very close to the obtained results and thus it is a next argument supporting the
conception.

Although the triple point was not inspected seriously, we have inspected the models with j = 0.08, 0.12
with special care. The neighbourhood of the transitions was inspected using the finite-size scalings of both
susceptibilities.5 The observables were computed on lattices with linear sizes N = 32, 64, 128, 256, 512. The
jump of the helicity was observed, too.

• The model with j = 0.08 has still well separated phase transitions. The magnetic susceptibility is already
attenuated at T2(j = 0.08) ≈ 0.215, the finite-size scaling of the nematic susceptibility χ2N

7/4 intersect
with high precision at T2(j = 0.08) ≈ 0.2165 J . See Fig.4.14. The 2-parametric fit of the helicity
modulus for the temperatures T = 0.2075, 0.2100, 0.2125, 0.2150, 0.2175 J with N = 64, 128, 256, 512
gives jumps in the range from 8.35T

π to 9.3T
π with unestimated accuracy.6

• The model with j = 0.12 is rather complicated – the vicinity of the triple point results also in increasing
autocorrelation times.7 The data is unclear: the finite-size scaling χ2/N

4/4 does not intersect well,

5The nematic susceptibility was used in both possible finite-size scalings χ2 N7/4 and χ2 N4/4.
6The root-mean-square error δ of the 2-parametric fit of the helicity has not a well localized minimum. Therefore this method

(fitting values of ΥN (T ) for only 4 lattice sizes, and with relatively high error bars ∼ 0.002J) is inappropriate for determination
of the transition temperature.

7For a finite lattice is our argument (from beginning of Sec.2.1) that at the magnetic-paramagnetic phase transition do
half-vortices not play a role, not valid. Therefore complicated finite-size effects may arise in the vicinity of the triple point .
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but both, the finite-size scaling χ1/N
7/4, and χ2/N

7/4 intersect well. The magnetic susceptibility
seems to diverge with N → ∞. The 2-parametrical fit of the helicity for the temperatures T =
0.2350, 2375, 2400, 2425 J with N = 64, 128, 256, 512 estimates the universal jump in the range from
6.15T
π to 7.8T

π . See Fig.4.15.

Figure 4.14: Left: The finite-size scaling of the nematic susceptibility χ2 N
7/4 for determination of T2(j = 0.08).

Right: The helicity modulus ΥN (T ) for j = 0.08 and N = 32, 64, 128, 256, 512.

Figure 4.15: Above: The magnetic susceptibility χ1,N (T ) and the nematic susceptibility χ2,N (T ) for N =
64, 128, 256, 512 and j = 0.12. In the middle: The finite-size scaling of the magnetic susceptibility χ1 N

7/4 inter-
sects quite well at T2(j = 0.12) ≈ 0.2325 J . The finite-size scaling of the nematic susceptibility χ2 N

7/4 intersects
quite well, too. Below: The jump of the helicity modulus ΥN (T ) for j = 0.12 does not look as 2T

π
, nor as 8T

π
.
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Figure 4.16: Phase diagram in the most interesting region of the j, T plane. The magnetic-nematic phase transition
temperature T1(j) was obtained from the specific heat peaks for various j. The Ising estimate of phase transition
temperature T1(j) (see Eq.(1.20)) is plotted there for comparison. The nematic-paramagnetic phase transition tem-
perature T2(j) was find using the finite-size-scaling for the nematic susceptibility as the intersection of χ2,N (T )N7/4

for various lattice sizes N . The magnetic-paramagnetic phase transition was determined using the finite-size scaling
of both susceptibilities as the intersection of χ1,N (T )N7/4, or χ2,N (T )N4/4 for various N . The region near the triple
point was not inspected seriously.
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Conclusion

We have studied a modified 2-dimensional XY model on the square lattice defined by the Hamiltonian

H = −
∑
〈kl〉

[J1 cos (θk − θl) + J2 cos 2 (θk − θl)] , for J2 ≥ 0,

using Monte Carlo simulations. Our goal was to specify the phases in the space of coupling parameter
j = J1

J1+4J2
and temperature T and to determine the types of phase transitions between the phases. We have

revised the KT theory for our modified model.
We have verified the expectation that the phase diagram consists of 3 phases (the magnetic, the nematic

and the paramagnetic phase) by measuring the helicity modulus and the magnetic and the nematic suscep-
tibility. The character of the phase transitions was investigated in detail for 4 representative values of the
parameter j, namely j = 0, 0.02, 0.16, 1.

The phase transition between the magnetic and the nematic phase is Ising-like. We have 2 arguments
(1-2) and 3 indications (3-5) in support of this:

1. The peak of the differential heat capacity scales, within the error bars, as it should for the Ising model.

2. We have found an order parameter m, which scales in close vicinity of T1 as (T1 − T )δ with the Ising
exponent δ = 1/8.

3. The entropy increase according to the differential heat capacity is with high accuracy ln 2.

4. The Ising-estimate Eq.(1.20) of T1(j) fits well the determined transition temperatures T1(j).

5. The number of walls increases at the transition temperature T1 rapidly.

The transition between the magnetic and the paramagnetic phase is of the Kosterlitz-Thouless (KT) type
with an universal jump 2T

π caused by unbinding of vortex–anti-vortex pairs. We have investigated the phase
transition using finite-size scaling of the helicity modulus Υ, the magnetic susceptibility χ1, and of the nematic
susceptibility χ2, the transition temperatures were internally consistent. From the finite-size scaling of the
helicity modulus it is observable that the magnitude of the universal jump is 2T

π with reasonable accuracy.
The nematic-paramagnetic transition is of the KT type with an universal jump 8T

π caused by unbinding
of half-vortex–anti-half-vortex pairs. We have studied the finite-size scaling of the helicity modulus and of
the nematic susceptibility and the obtained transition temperatures were internally consistent. Again, the
helicity modulus reveals that the value of the universal jump is close to 8T

π .
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Slovak summary
Slovenský súhrn

V tejto práci sme študovali modifikovaný XY model na štvorcovej mriežke definovaný Hamiltoniánom

H = −
∑
〈kl〉

[J1 cos (θk − θl) + J2 cos 2 (θk − θl)] , pre J2 ≥ 0.

Našim cieľom bolo pomocou Monte Carlo simulácií určiť fázový diagram v rovine parametra j = J1
J1+4J2

a
teploty T a charakter fázových prechodov medzi jednotlivými fázami.

Prevažná väčšina dát bola získaná pomocou randomizovaného Wolff-ovho algoritmu, menšia časť pomocou
Metropolis-ovho algoritmu. Náš modelový systém tvorili štvorcové mriežkyN×N spinov s periodickými okra-
jovými podmienkami, typicky pre N = 64, 128, 256, 512. Simulácie odhalili pomocou meraní tuhosti spinov
Υ a magnetickej, resp. nematickej susceptibility χ1, χ2, že fázový diagram pozostáva z 3 fáz: magnetickej,
nematickej a paramagnetickej.

Prepracovali sme teóriu Kosterlitz-a a Thouless-a [2] pre náš model a teoreticky sme podchytili charakter
KT fázových prechodov pre prechod magnet-paramagnet a nematikum-paramagnet. Kvalitatívne sme ukázali,
že prechod medzi magnetickou a nematickou fázou môže byť Ising-ovského typu.

Jednotlivé typy fázových prechodov sme preverovali pre tzv. reprezentatívne rezy parametrickou rovi-
nou, konkrétne pre j = 0, 0.02, 0.16, 1. Hodnoty parametra j boli zvolené tak, aby pokrývali všetky fázové
prechody.

Našli sme 2 argumenty (1-2) a 3 indície (3-5) dokladajúce, že prechod medzi magnetom a nematikom je
Isingovský:

1. Maximum mernej tepelnej kapacity (na 1 spin) cdiff(T ) prislúchajúci interakcii J2 (t.j. energii doméno-
vých stien) rastie s veľkosťou mriežky v rámci neistôt meraní logaritmicky s veľkosťou, tak ako je to
známe pre Ising-ov model.

2. Našli sme parameter usporiadania m, ktorý škáluje v tesnej blízkosti pod T1 proporcionálne s (TC−T )δ,
kde δ = 1/8 je exponent pre Ising-ov prechod.

3. Nárast entropie prislúchajúci mernej tepelnej kapacite cdiff(T ) je s vysokou presnosťou ln 2.

4. Odhad Eq.(1.20) pre teplotu T1(j) Ising-ovského prechodu je vo výbornom súlade s výsledkami simulácií.

5. Počet doménových stien pri teplote prechodu T1 prudko stúpa.

Fázový prechod medzi magnetickou fázou a paramagnetickou fázou je podľa nás spôsobený prítomnosťou
viazaných párov vír–antivír, ktoré sa pri kritickej teplote prechodu stávajú voľnými vírmi. Pre tento fázový
prechod KT teória predpovedá univerzálny skok v tuhosti spinov o 2T

π . Tento skok je zo škálovania tuhosti
spinov pre rôzne mriežky dobre badateľný. Teploty fázového prechodu sme určovali zo škálovania tuhosti
spinov, magnetickej a nematickej susceptibility. Takto určené teploty fázového prechodu boli konzistentné,
čo je netriviálny výsledok prispievajúci k potvrdeniu predpokladu, že tento prechod je typu KT, a že je
spôsobený rozpadom párov vír–antivír.

Za fázový prechod medzi nematikom a paramagnetom sú podľa našej teórie zodpovedné polvíry, ktoré sa
v nematickej fáze vyskytujú iba viazané v pároch a v paramagnetickej sú už voľné. Skok v tuhosti je pre
takýto KT prechod tiež univerzálny, 8T

π . Na reprezentatívnych vzorkách j = 0, 0.02 sme urobili škálovanie
tuhosti spinov a nematickej susceptibility a dostali sme konzistentné teploty fázového prechodu, čo je opäť
pozitívny test teórie.
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