arXiv:1301.7435 PRL 110, 166802

Topological charge pumping of cold atoms

Lei Wang ETH Zurich

Collaborators:

Alexey Soluyanov Matthias Troyer

Xi Dai

Plan

Topological charge pumping in a 1D optical lattice

Plan

Topological charge pumping in a 1D optical lattice

Measure topological index of 2D optical lattices

Pumps

A pump is a device that moves fluids, or sometimes slurries, by mechanical action.

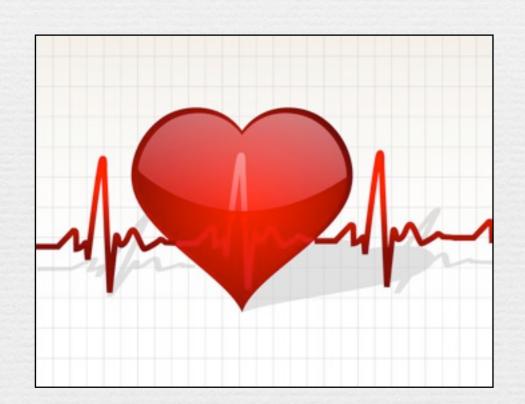
Pumps

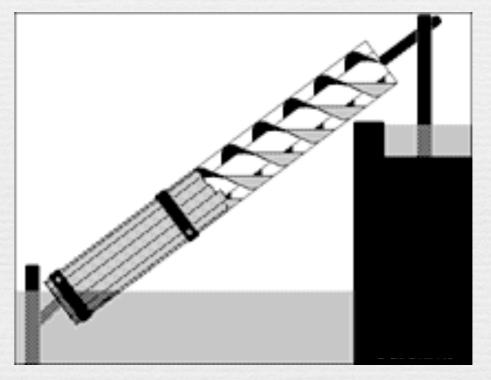
A pump is a device that moves fluids, or sometimes slurries, by mechanical action.



Pumps

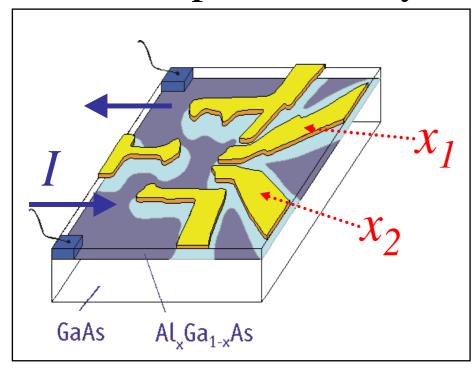
A pump is a device that moves fluids, or sometimes slurries, by mechanical action.

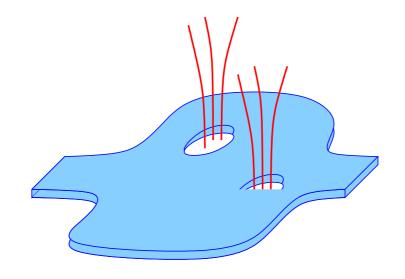




Archimedes' screw ~250 BC

 \bullet conductor penetrated by Aharonov-Bohm fluxes \boldsymbol{x} , \boldsymbol{x}

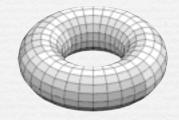




Switkes et al 1999

Archimedes' screw ~250 BC

Topological pump



A device transfers quantized charge in each pumping cycle.

Thouless 1983

$$H = \sum_{i} (t + \delta t) c_{Ai}^{\dagger} c_{Bi} + (t - \delta t) c_{Ai+1}^{\dagger} c_{Bi} + H.c.$$
Su, Schrieffer, Heeger, 197
$$\delta t > 0$$

$$\delta t < 0$$

$$\delta t < 0$$

$$Na_x dissipation t) + (t - \delta t) \cos ka$$

Dynamical analog of quantum Hall effect

$$d_{z}(k) = 0$$

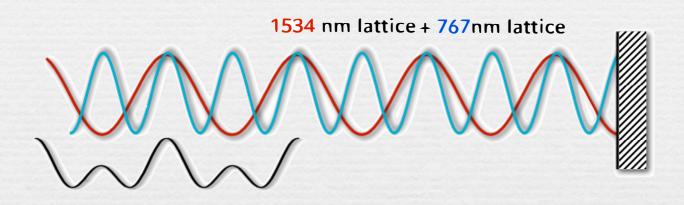
Experimental progresses

Optical Superlattice

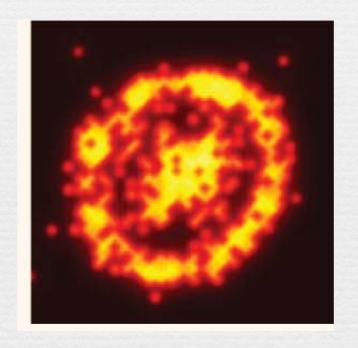
Fölling et al, Atala et al

in-situ imaging

Gemelke, et al, Sherson et al, Bakr et al



$$V_{\rm OL}(x) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \varphi\right)$$

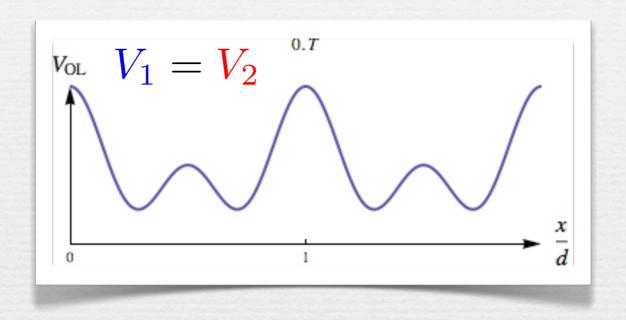


nc ca rc Allows to measure exact quantization of pumped charge

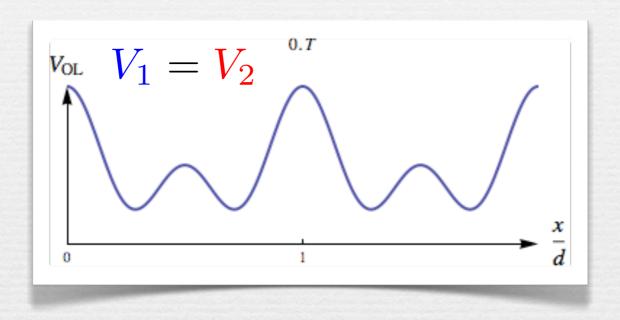
$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

$$V_1 = V_2$$

$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$



$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

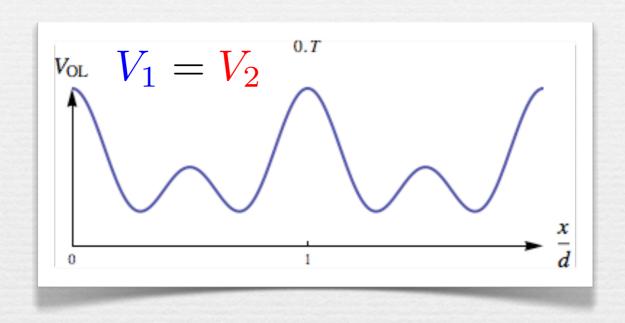


0 A = B - A = B

Su, Schrieffer, Heeger, 1979

$$T/2$$
 A — B = A — B

$$V_{\rm OL}(x,t) = V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$



$$0 A = B - A = B$$

T/4 A ---- B ---- A ---- B

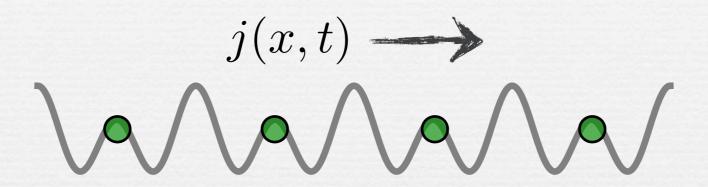
T/2 A — B = A — B

3T/4 A ---- B ---- B

Su, Schrieffer, Heeger, 1979

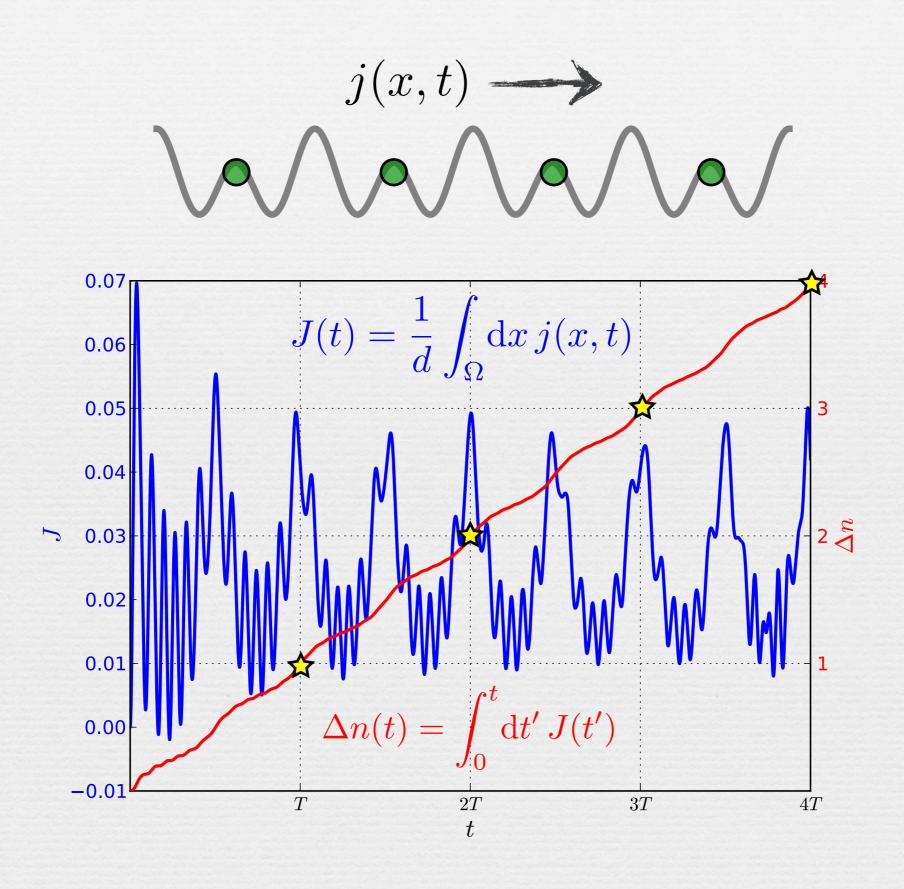
Rice, Mele, 1982

Pumping dynamics



$$H(x,t) = -\frac{\hbar^2}{2m} \nabla^2 + V_{\rm OL}(x,t)$$
$$i\frac{\partial}{\partial t} |\Psi\rangle = H(x,t) |\Psi\rangle$$

Pumping dynamics

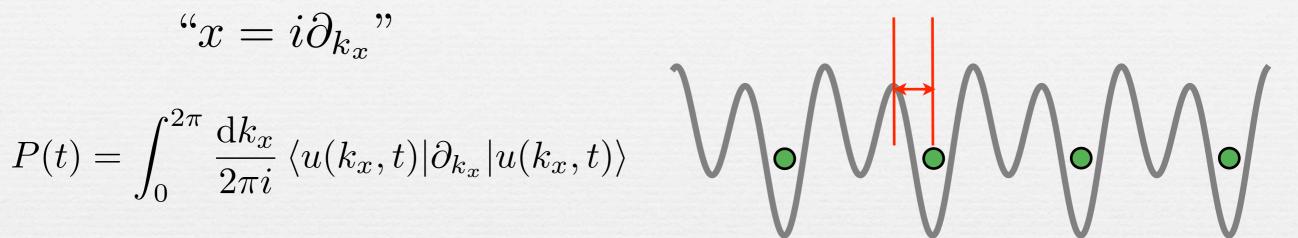


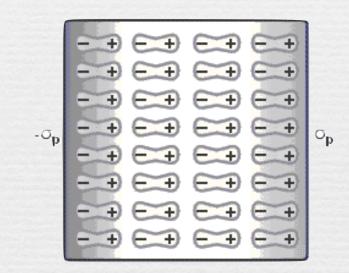
Polarization and Berry phase

Resta, King-Smith, Vanderbilt, ...

$$"x = i\partial_{k_x}"$$

$$P(t) = \int_0^{2\pi} \frac{\mathrm{d}k_x}{2\pi i} \langle u(k_x, t) | \partial_{k_x} | u(k_x, t) \rangle$$



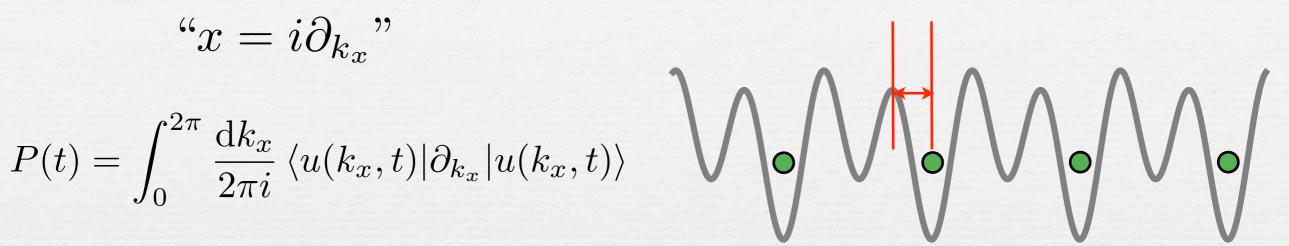


Polarization and Berry phase

Resta, King-Smith, Vanderbilt, ...

$$"x = i\partial_{k_x}"$$

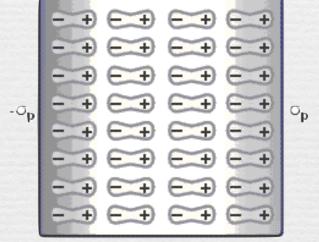
$$P(t) = \int_0^{2\pi} \frac{\mathrm{d}k_x}{2\pi i} \langle u(k_x, t) | \partial_{k_x} | u(k_x, t) \rangle$$



Change of Polarization

$$\Delta P = \int_0^T dP$$

$$= \frac{1}{2\pi i} \int_0^T \int_0^{2\pi} dt \, dk_x \left(\langle \partial_t u | \partial_{k_x} u \rangle - h.c. \right)$$
Berry Curvature



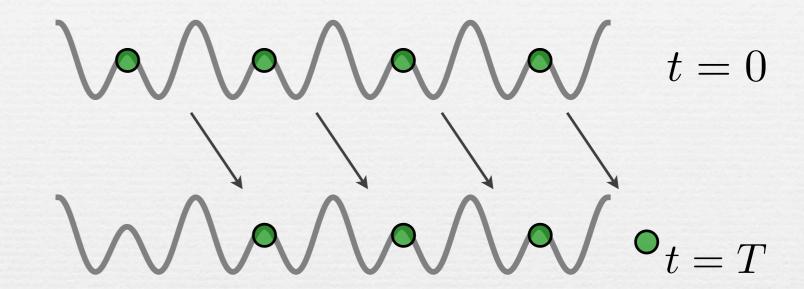
Berry Curvature

$$(\langle \partial_t u | \partial_{k_x} u \rangle - h.c.)$$

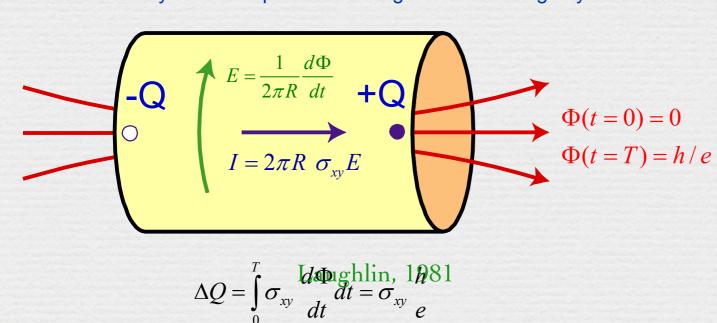
= Chern number

Connection to IQHE

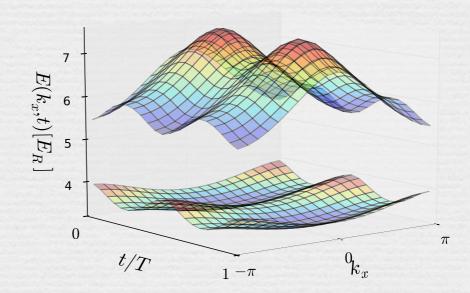
$$H(k_x, t) = H(k_x, t + T)$$



Adiabatically thread a quantum of magnetic flux through cylinder.

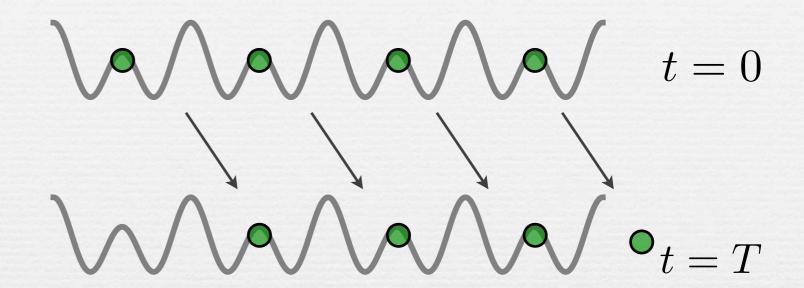


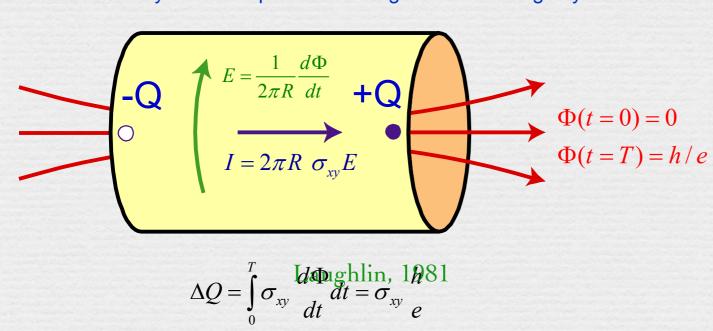
$$V_1 = 4E_R \quad V_2 = 4E_R$$



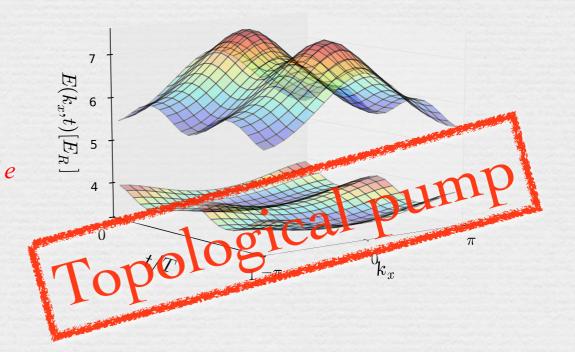
Connection to IQHE

$$H(k_x, t) = H(k_x, t + T)$$





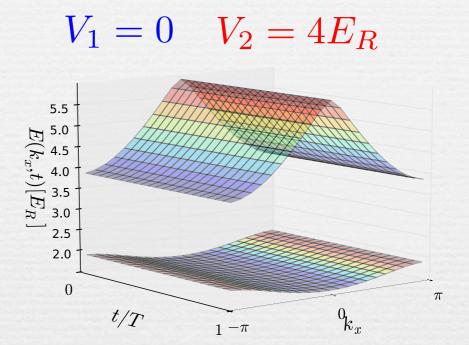
$$V_1 = 4E_R \quad V_2 = 4E_R$$



Adiabatic connection

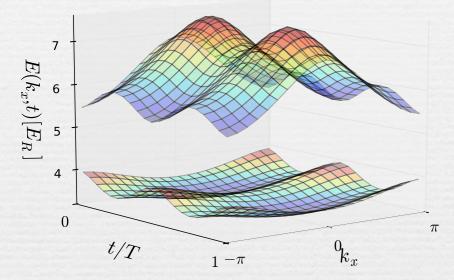
$$V_1 = 4E_R$$
 $V_2 = 4E_R$

$$V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

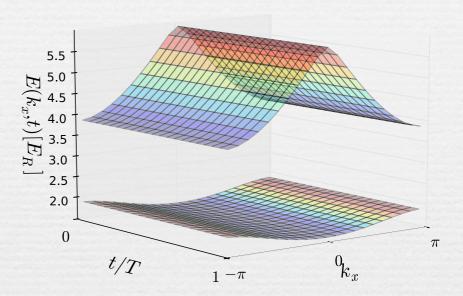


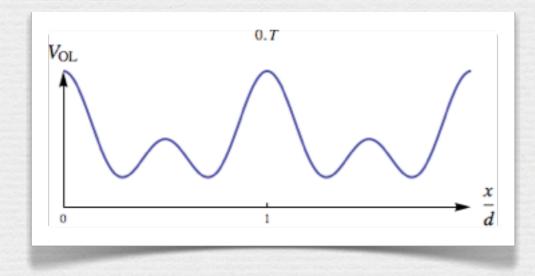
Adiabatic connection

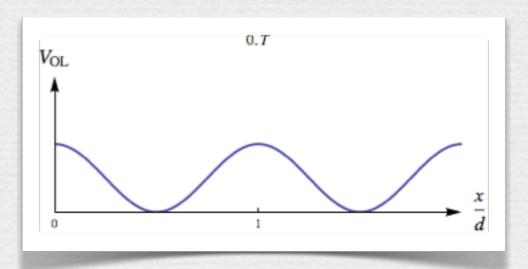
$$V_1 = 4E_R \quad V_2 = 4E_R$$

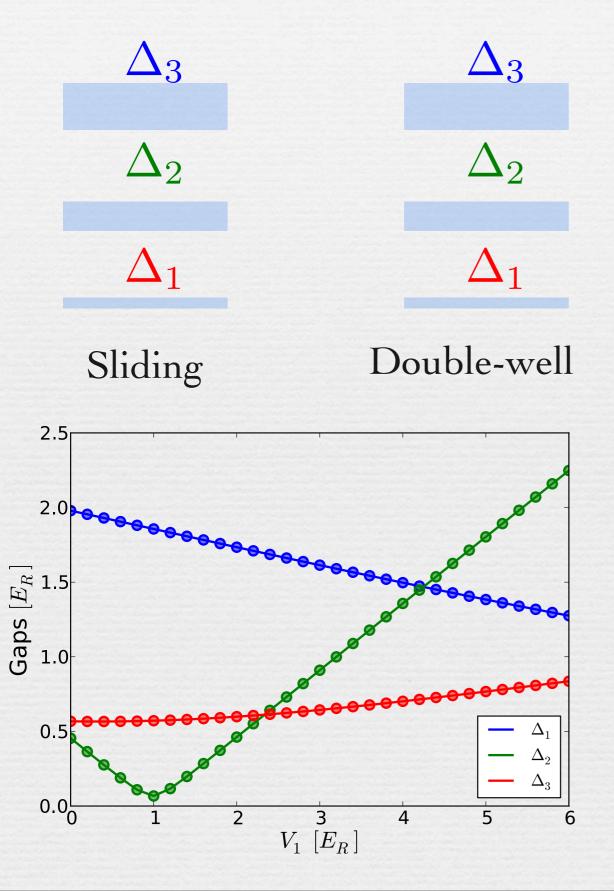


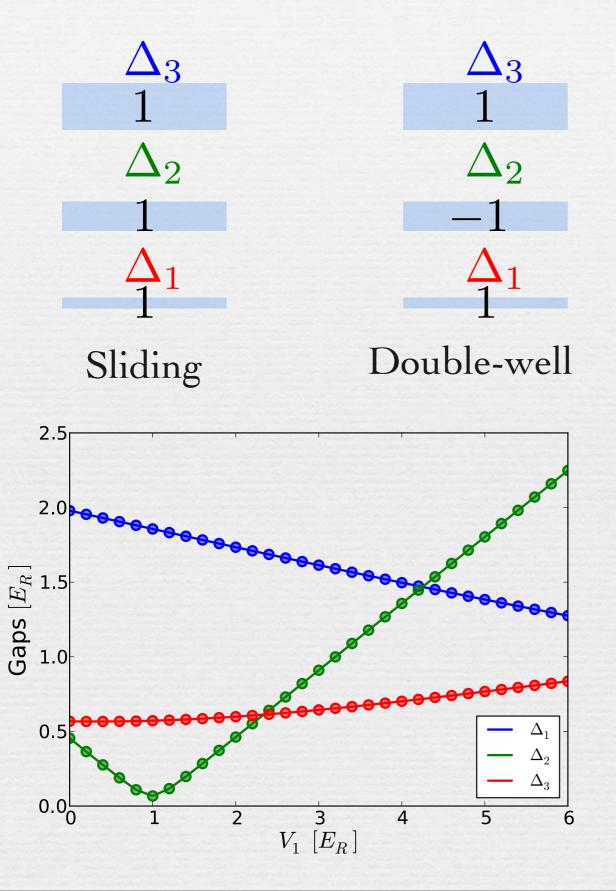
$$V_1 \cos^2\left(\frac{2\pi x}{d}\right) + V_2 \cos^2\left(\frac{\pi x}{d} - \frac{\pi t}{T}\right)$$

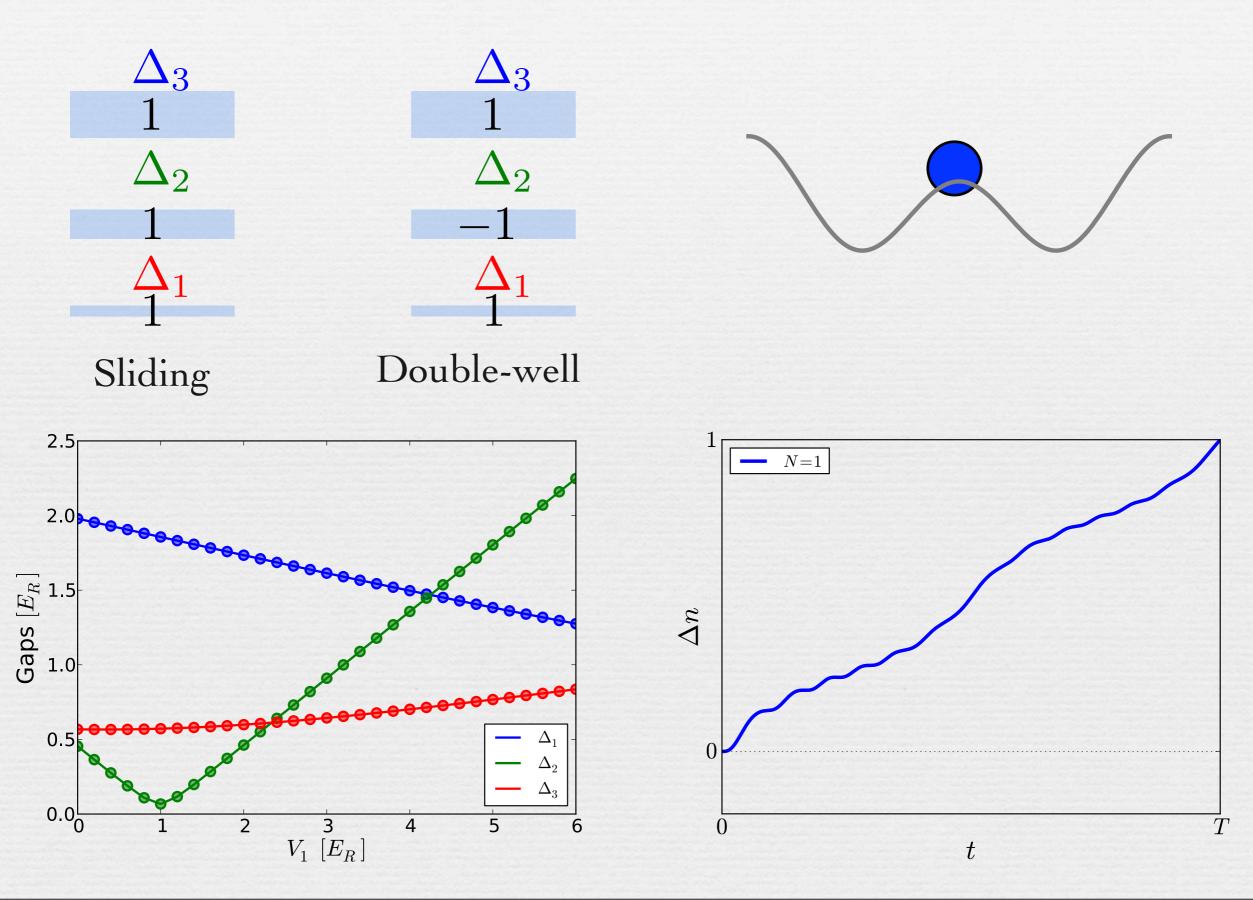


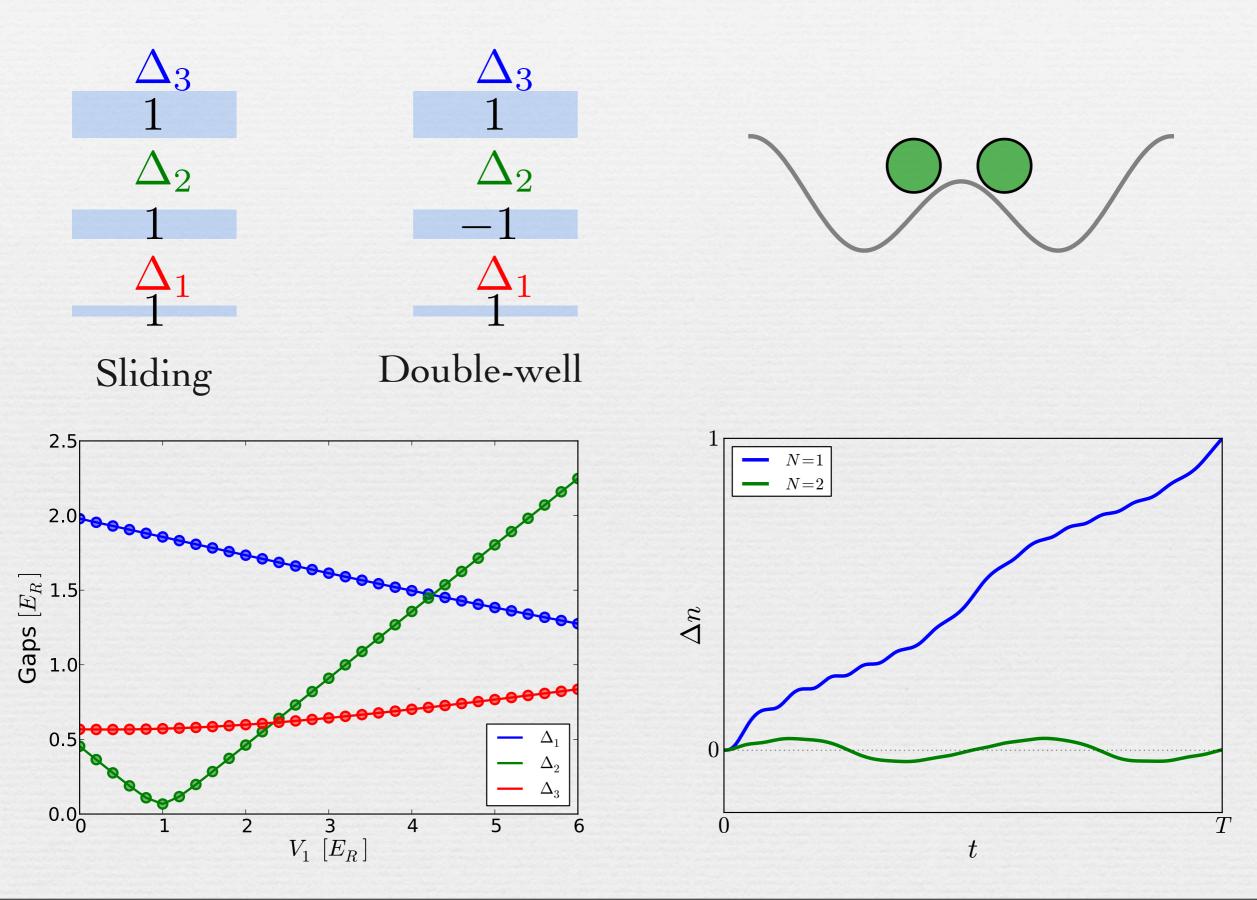


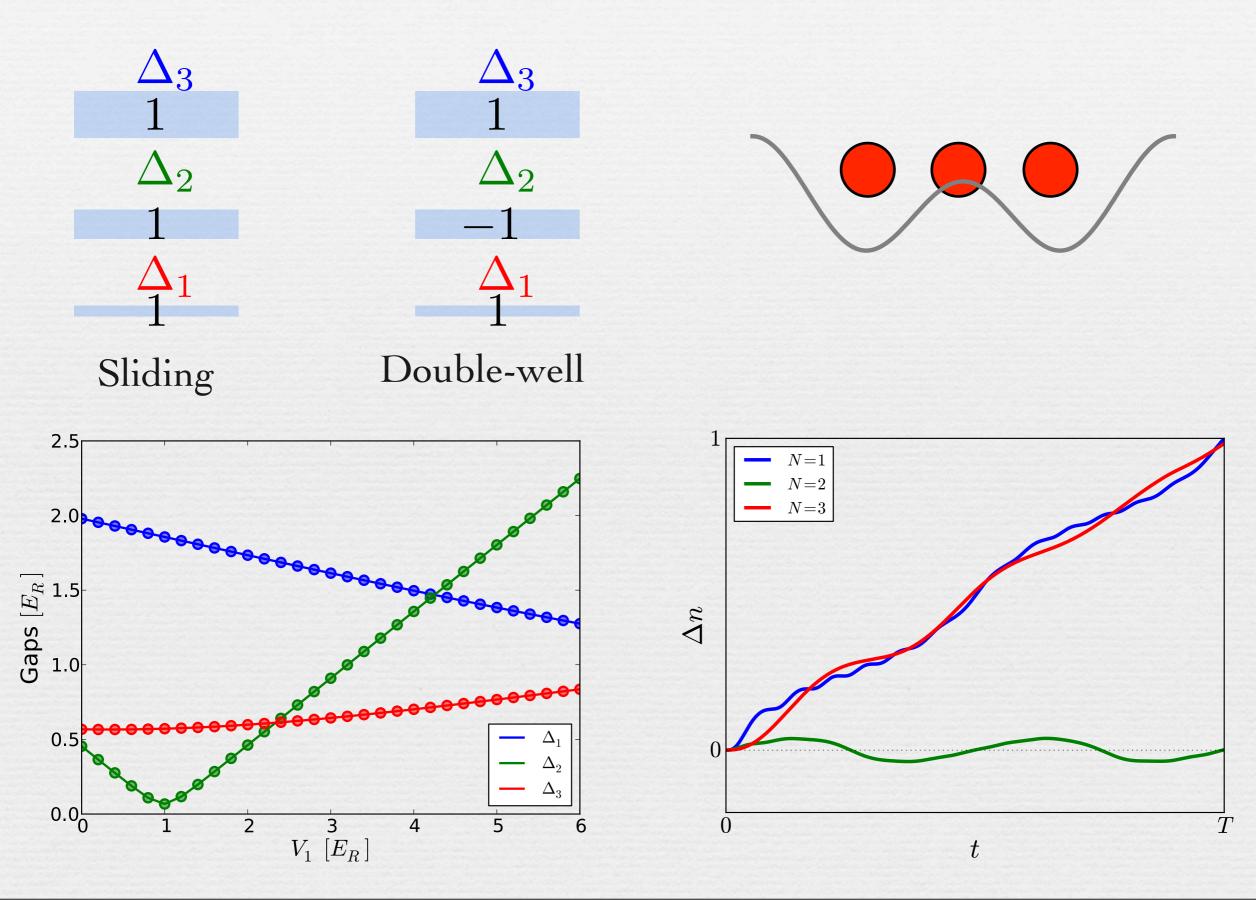




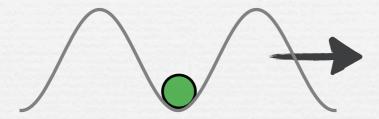








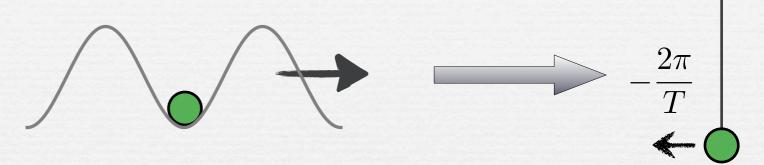
$$\left(m\ddot{x} = -\frac{\partial V_{\mathrm{OL}}(x,t)}{\partial x}\right)$$



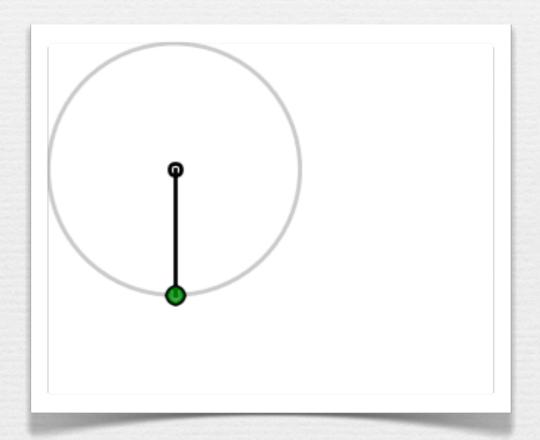
$$m\ddot{x} = -\frac{\partial V_{\rm OL}(x,t)}{\partial x} \qquad -\frac{2\pi}{T}$$

Without V₁ term, pumping maps to a simple pendulum

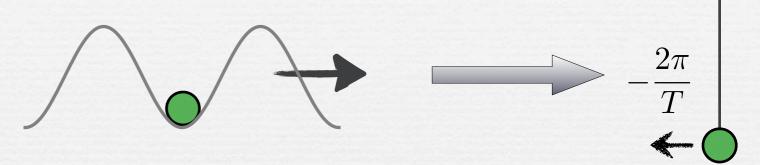
$$m\ddot{x} = -\frac{\partial V_{\mathrm{OL}}(x,t)}{\partial x}$$



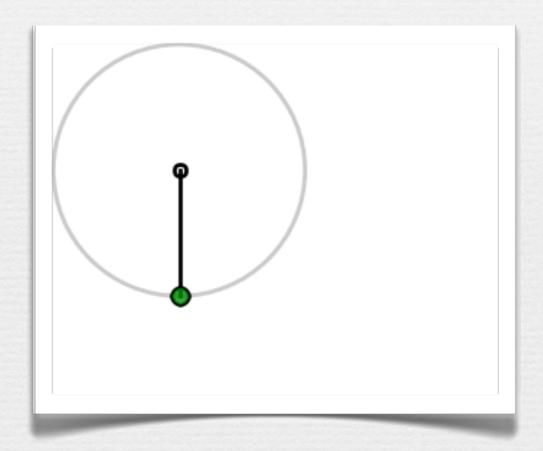
- Without V₁ term, pumping maps to a simple pendulum
 - Slow pumping-> small oscillations-> follows pumping



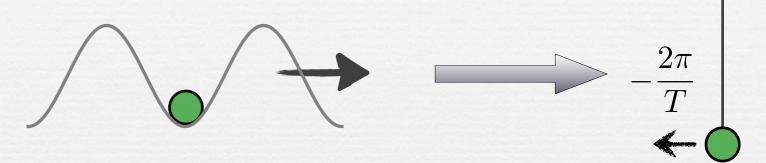
$$m\ddot{x} = -\frac{\partial V_{\rm OL}(x,t)}{\partial x}$$



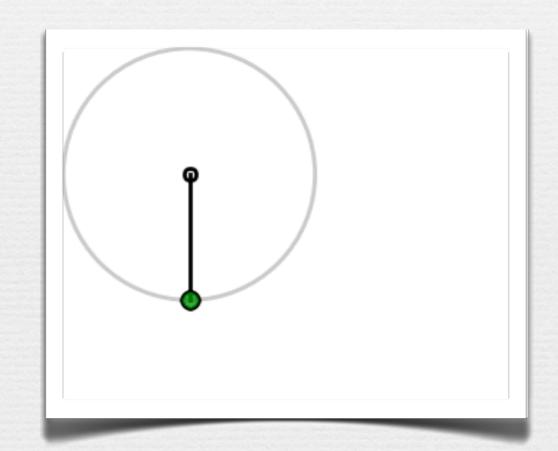
- Without V₁ term, pumping maps to a simple pendulum
 - Slow pumping-> small oscillations-> follows pumping
 - Fast pumping-> swings around pivot-> can not follow pumping



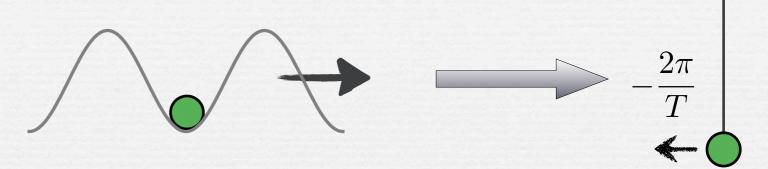
$$m\ddot{x} = -\frac{\partial V_{\rm OL}(x,t)}{\partial x}$$



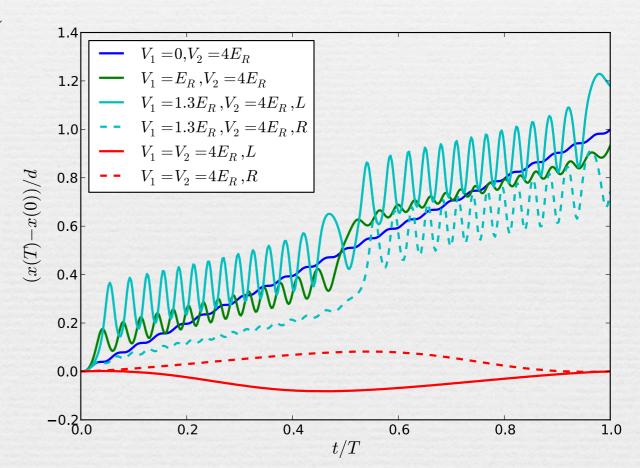
- Without V₁ term, pumping maps to a simple pendulum
 - Slow pumping-> small oscillations-> follows pumping
 - Fast pumping-> swings around pivot-> can not follow pumping



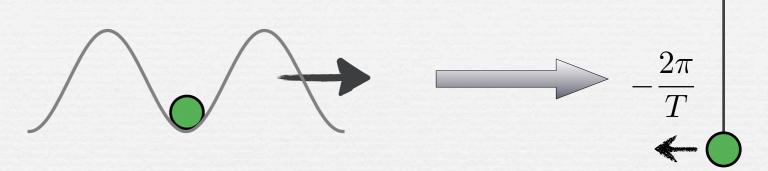
$$m\ddot{x} = -\frac{\partial V_{\mathrm{OL}}(x,t)}{\partial x}$$



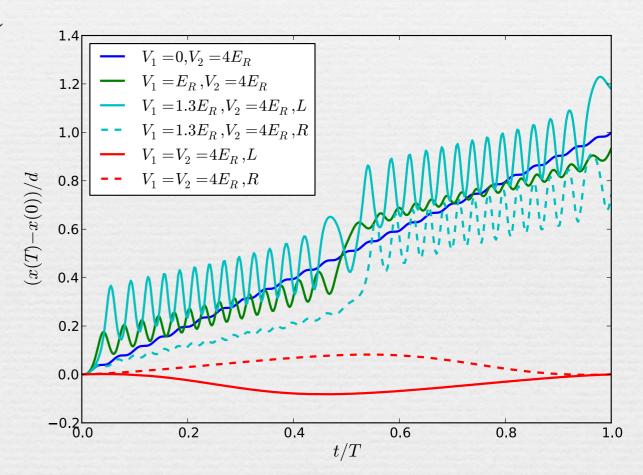
- Without V₁ term, pumping maps to a simple pendulum
 - Slow pumping-> small oscillations-> follows pumping
 - Fast pumping-> swings around pivot-> can not follow pumping
- V₁ term: Driven pendulum shows chaotic behavior.



$$m\ddot{x} = -\frac{\partial V_{\mathrm{OL}}(x,t)}{\partial x}$$



- Without V₁ term, pumping maps to a simple pendulum
 - Slow pumping-> small oscillations-> follows pumping
 - Fast pumping-> swings around pivot-> can not follow pumping
- V₁ term: Driven pendulum shows chaotic behavior.



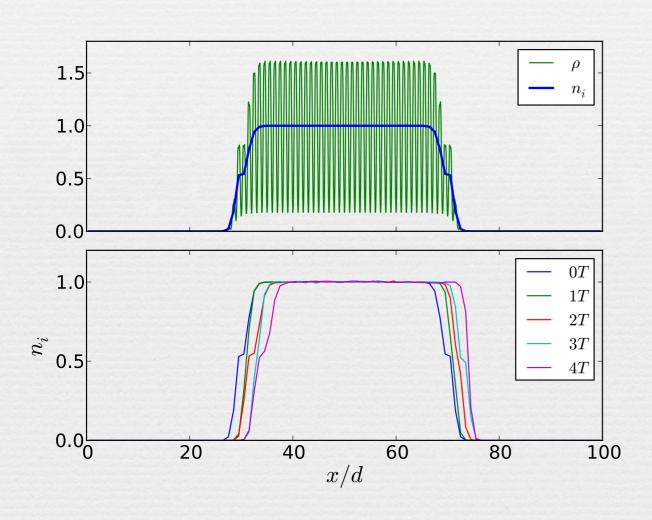
In general, classical pumped charge is not quantized

Practical issues

- Detection
- External trap
- Temperature effect
- Non-adiabatic effect

Trapping & Detection

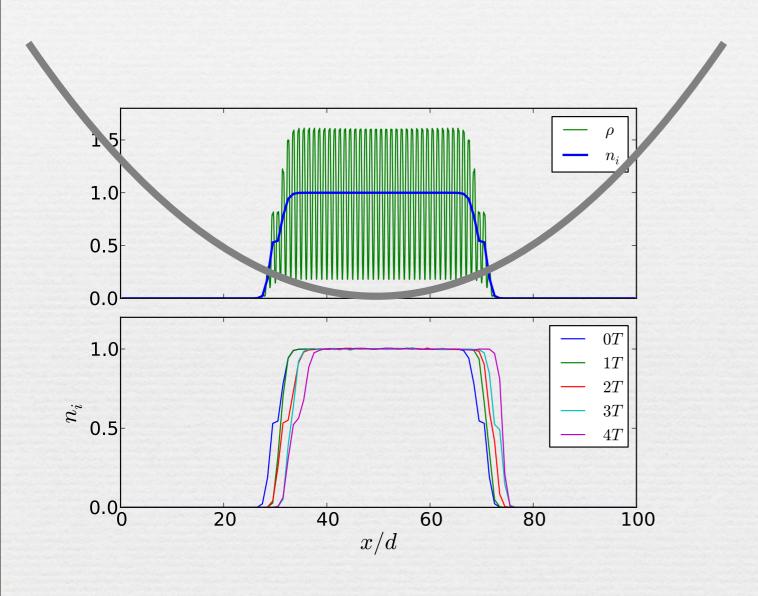
LW, Troyer and Dai, 1301.7435



$$\langle x \rangle / d = \Delta n$$

Trapping & Detection

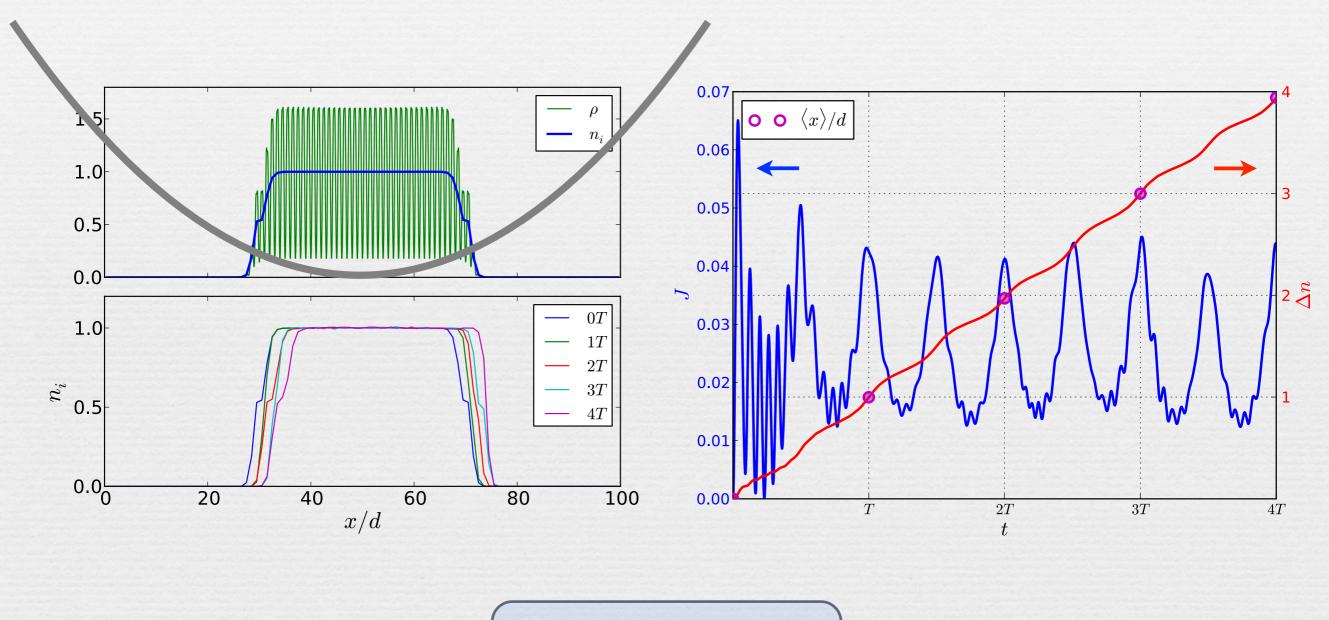
LW, Troyer and Dai, 1301.7435



$$\langle x \rangle / d = \Delta n$$

Trapping & Detection

LW, Troyer and Dai, 1301.7435



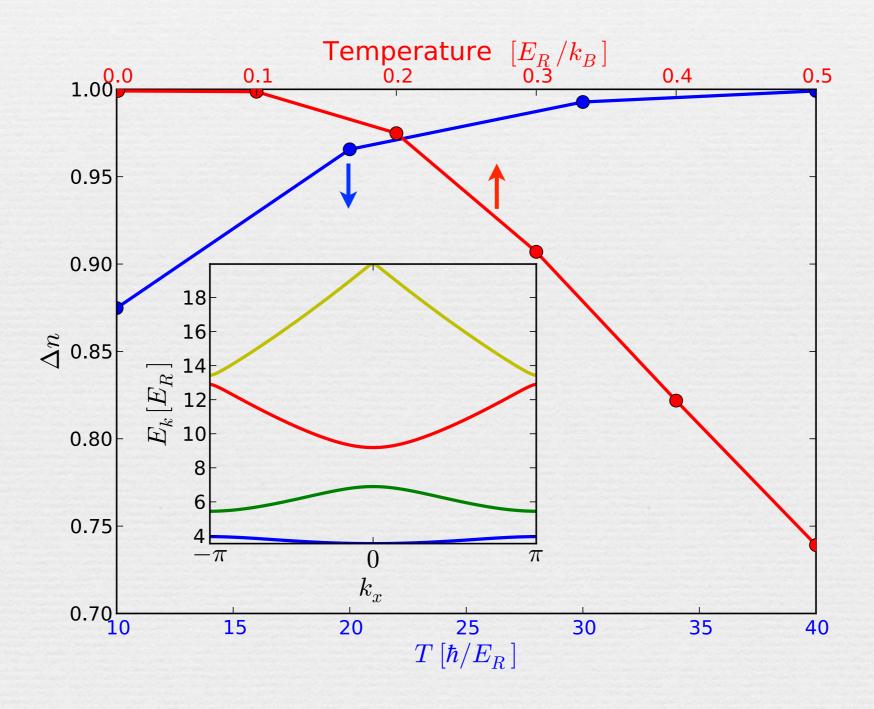
$$\langle x \rangle / d = \Delta n$$

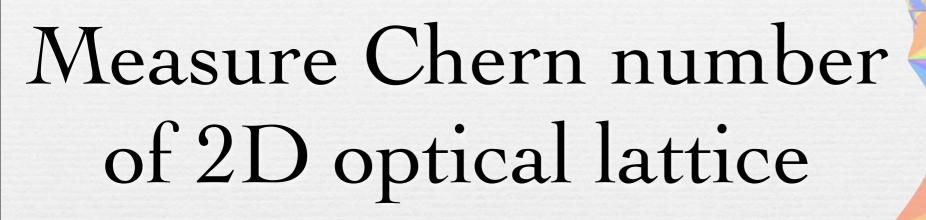
Temperature & Non-adiabatic effect

Temperature
$$\ll \frac{\Delta}{k_B}$$
 $T \gg \frac{\hbar}{\Delta}$

Temperature & Non-adiabatic effect

Temperature
$$\ll \frac{\Delta}{k_B}$$
 $T \gg \frac{\hbar}{\Delta}$



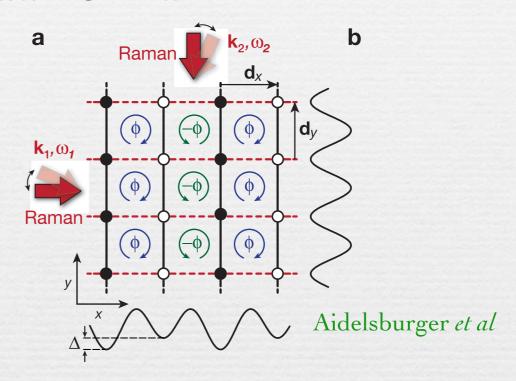


with

Synthetic gauge-field in optical lattices

Imprint complex phases to the hopping amplitude

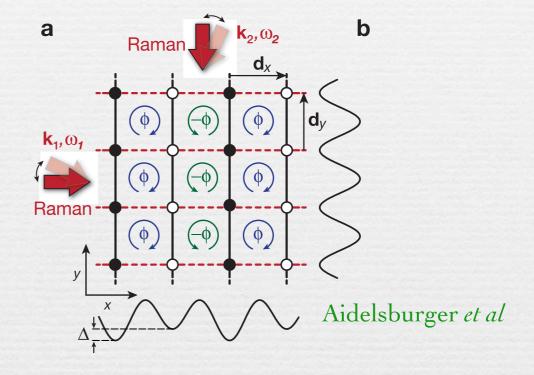
Staggered flux lattice Munich



Synthetic gauge-field in optical lattices

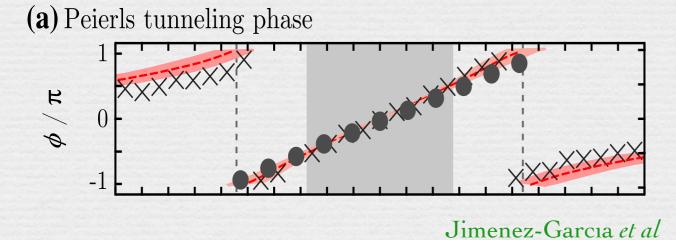
Imprint complex phases to the hopping amplitude

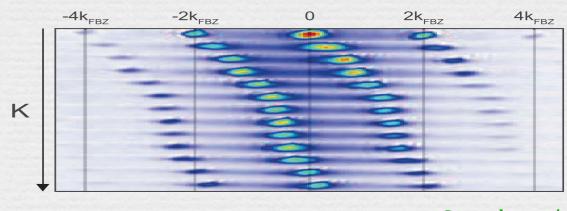
Staggered flux lattice Munich



1D Peierls lattice NIST, Hamburg

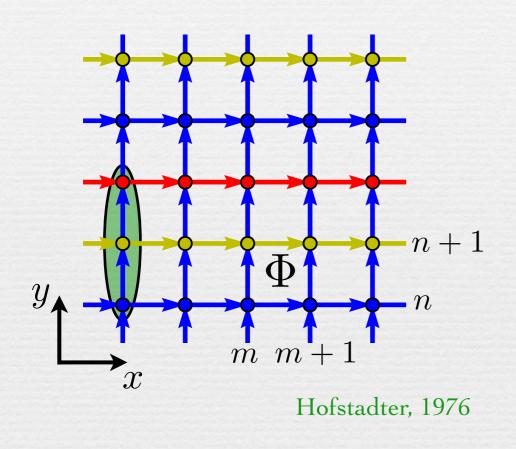
$$H = -J \sum_{m} e^{i2\pi\Phi} c_{m+1}^{\dagger} c_m + H.c.$$

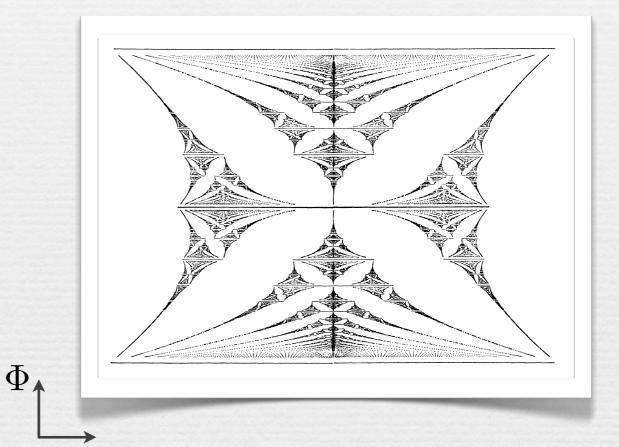




Hofstadter optical lattice

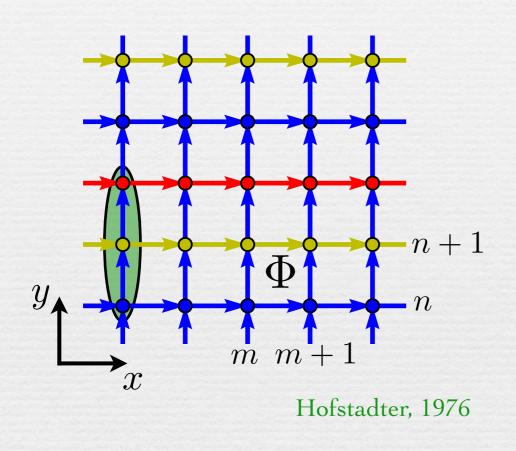
$$H = -J \sum_{m,n} e^{i2\pi n\Phi} c_{m+1,n}^{\dagger} c_{m,n} + c_{m,n+1}^{\dagger} c_{m,n} + H.c. \quad \Phi = p/q$$

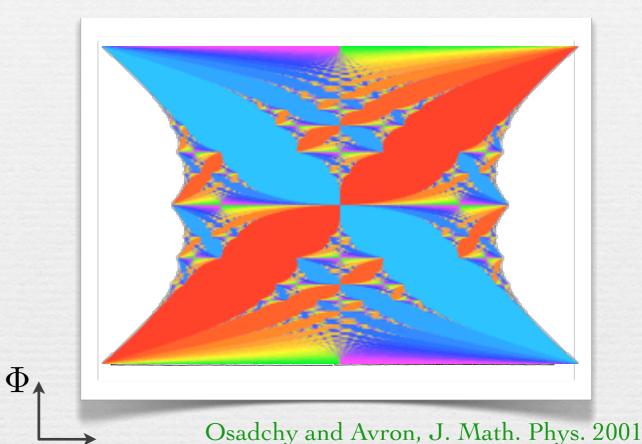




Hofstadter optical lattice

$$H = -J \sum_{m,n} e^{i2\pi n\Phi} c_{m+1,n}^{\dagger} c_{m,n} + c_{m,n+1}^{\dagger} c_{m,n} + H.c. \quad \Phi = p/q$$

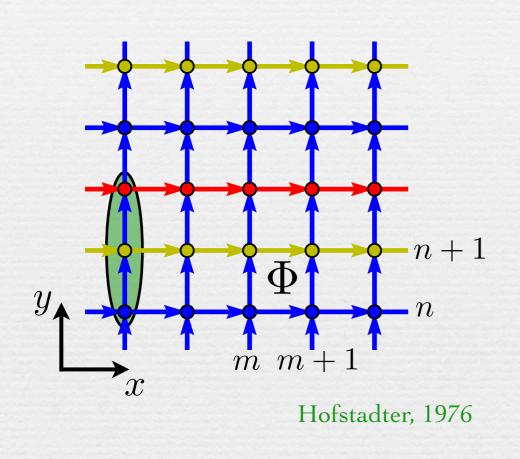


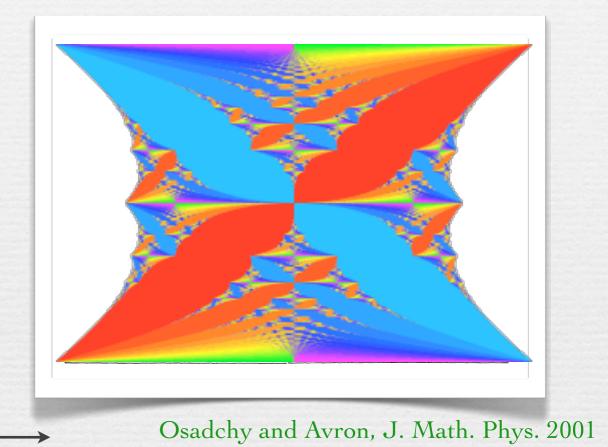


Hofstadter optical lattice

$$H = -J \sum_{m,n} e^{i2\pi n\Phi} c_{m+1,n}^{\dagger} c_{m,n} + c_{m,n+1}^{\dagger} c_{m,n} + H.c. \quad \Phi = p/q$$

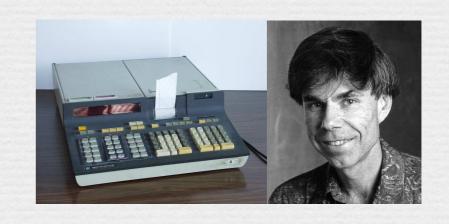
 Φ_{\bullet}





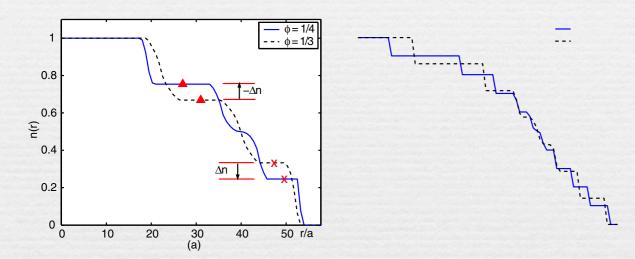
NO sharp edge states in harmonic trapping potential

Buchhold et al



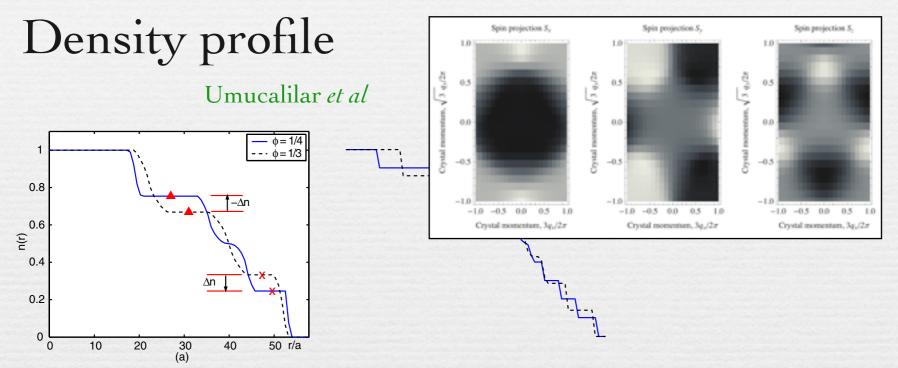
Density profile

Umucalilar et al



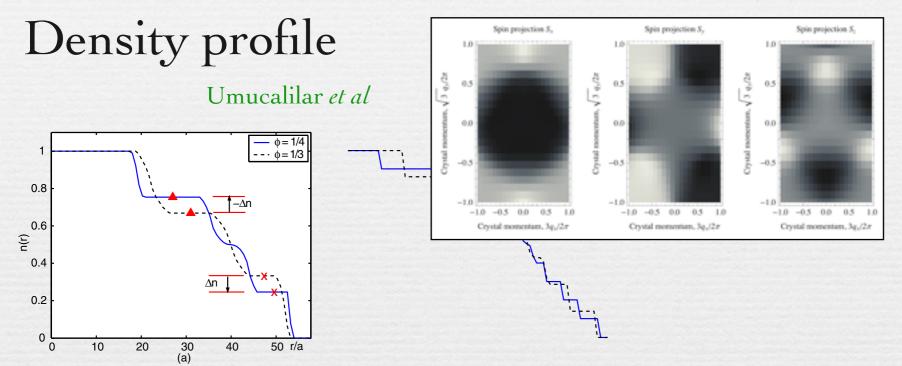
Time-of-flight

Alba et al, Zhao et al



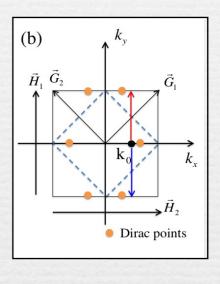
Time-of-flight

Alba et al, Zhao et al



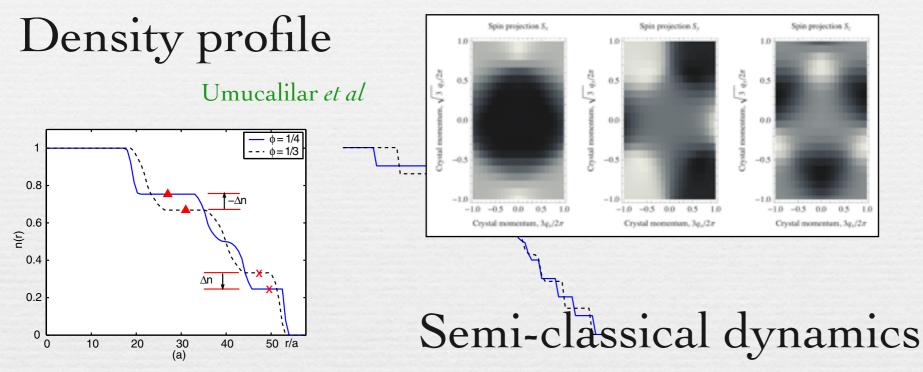
Zak phases

Abanin et al



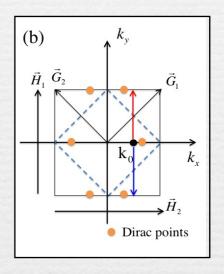
Time-of-flight

Alba et al, Zhao et al



Zak phases

Abanin et al

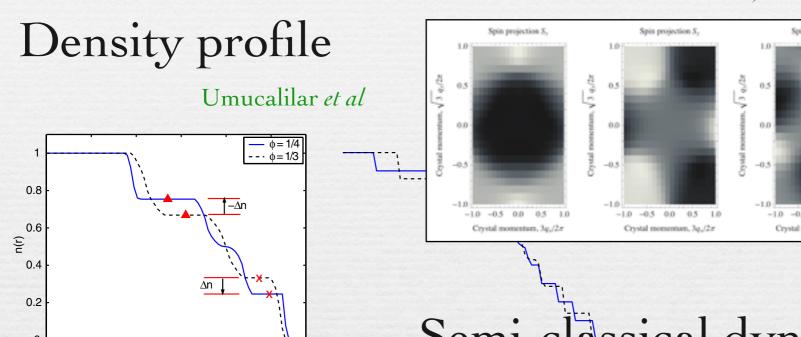


Price et al

$$\mathbf{\dot{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon(\mathbf{k})}{\partial \mathbf{k}} - \frac{\mathbf{F}}{\hbar} \times \hat{\mathbf{z}} \Omega(\mathbf{k})$$

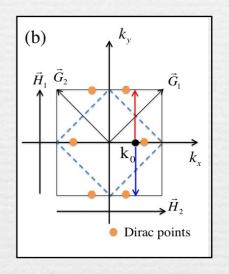
Time-of-flight

Alba et al, Zhao et al



Zak phases

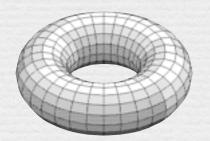
Abanin et al



Semi-classical dynamics

Price et al

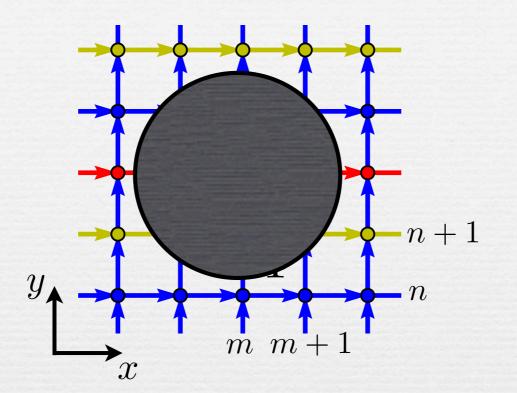
$$\mathbf{\dot{r}} = \frac{1}{\hbar} \frac{\partial \varepsilon(\mathbf{k})}{\partial \mathbf{k}} - \frac{\mathbf{F}}{\hbar} \times \hat{\mathbf{z}} \Omega(\mathbf{k})$$

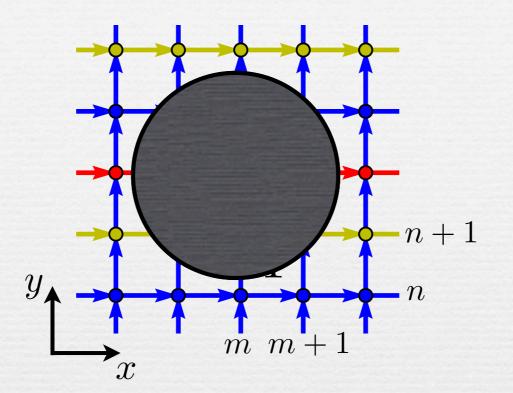


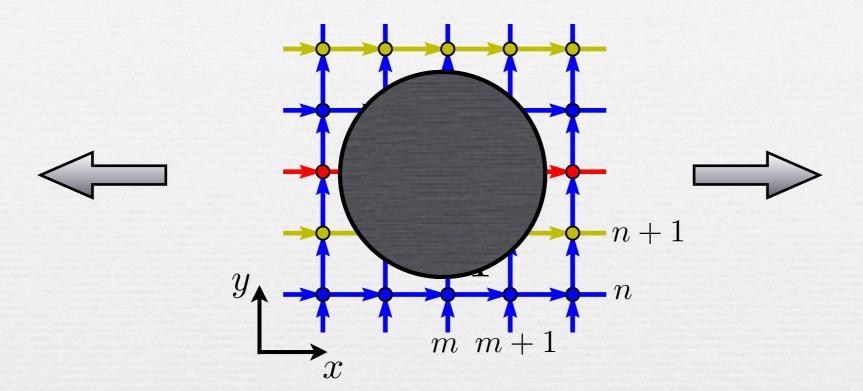
We propose a new probe based on

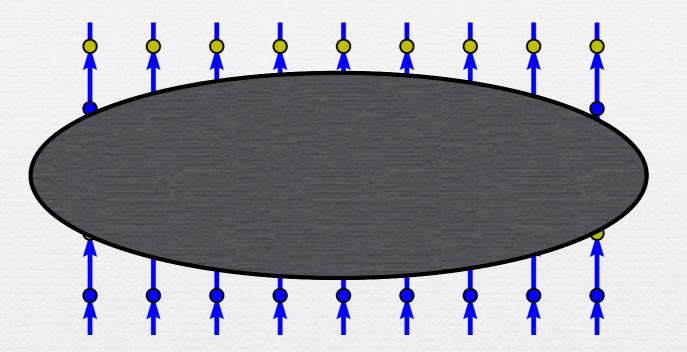
Topological Pumping Effect

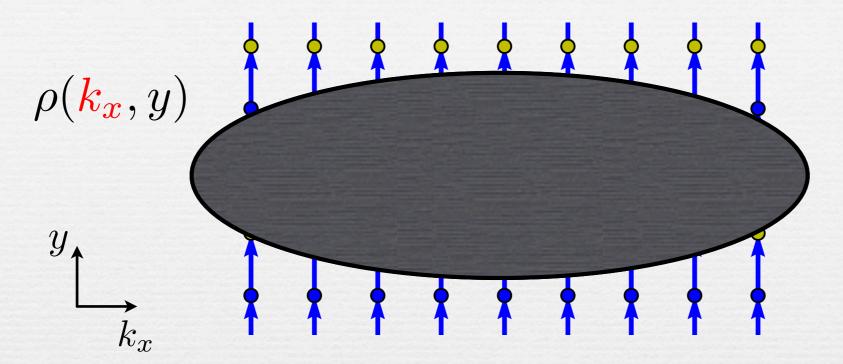
 $ho(\pmb{k_x},y)$

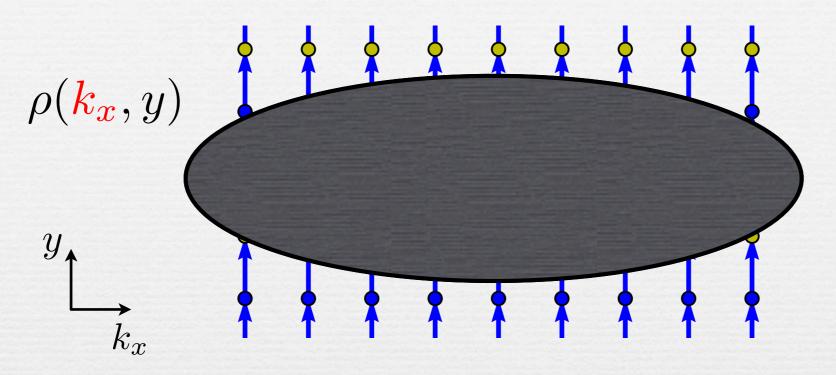




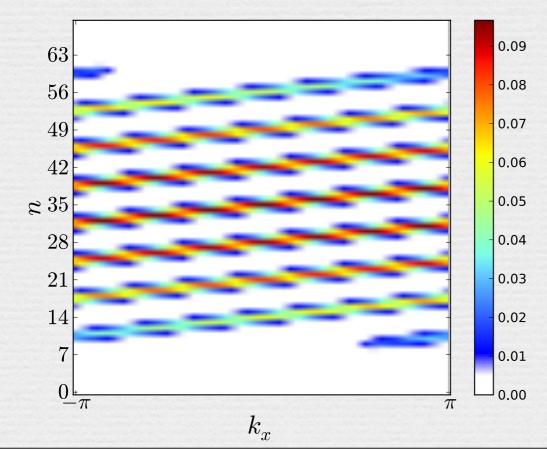


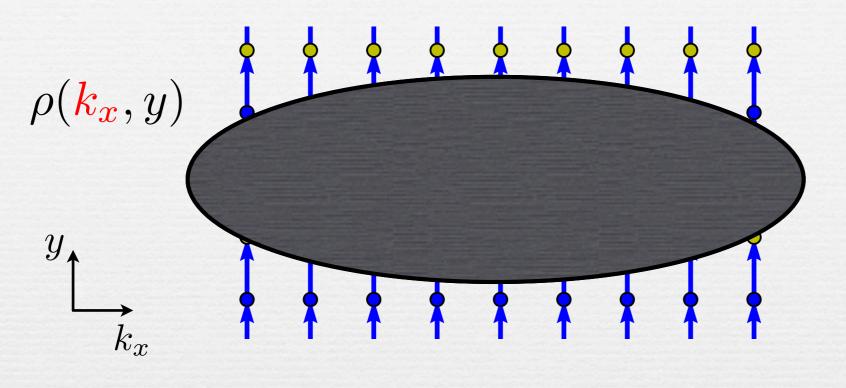


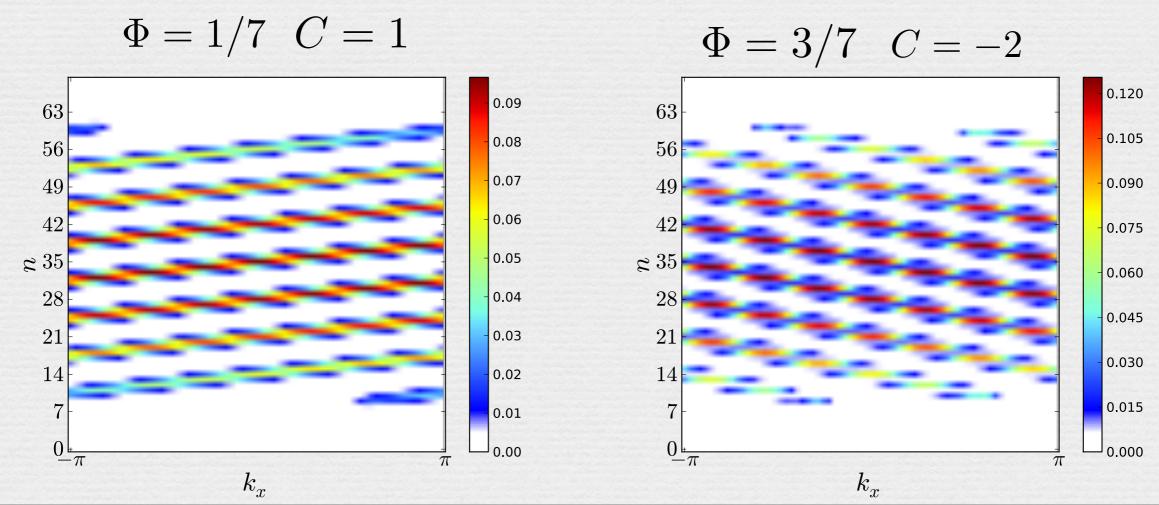


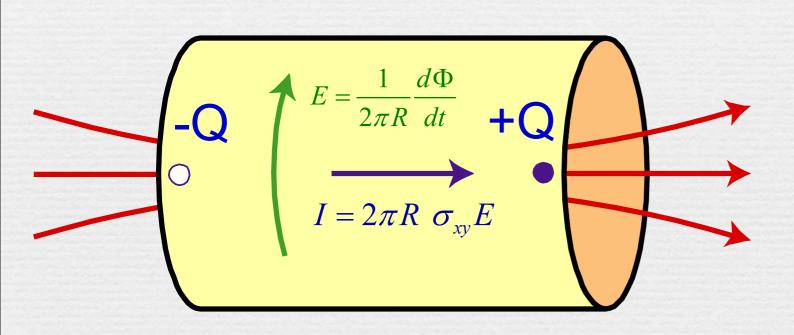


$$\Phi = 1/7 \ C = 1$$



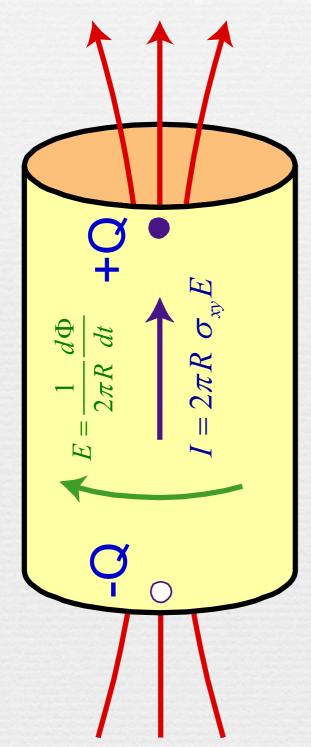


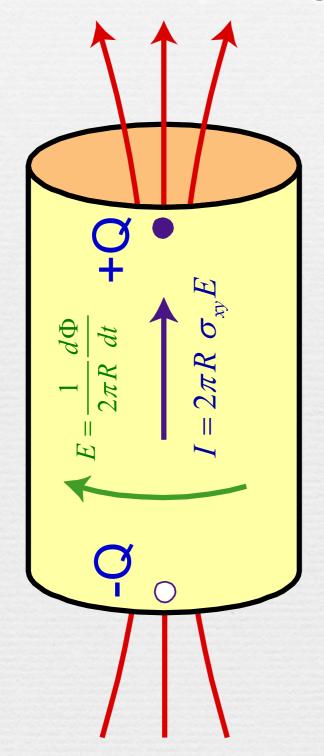


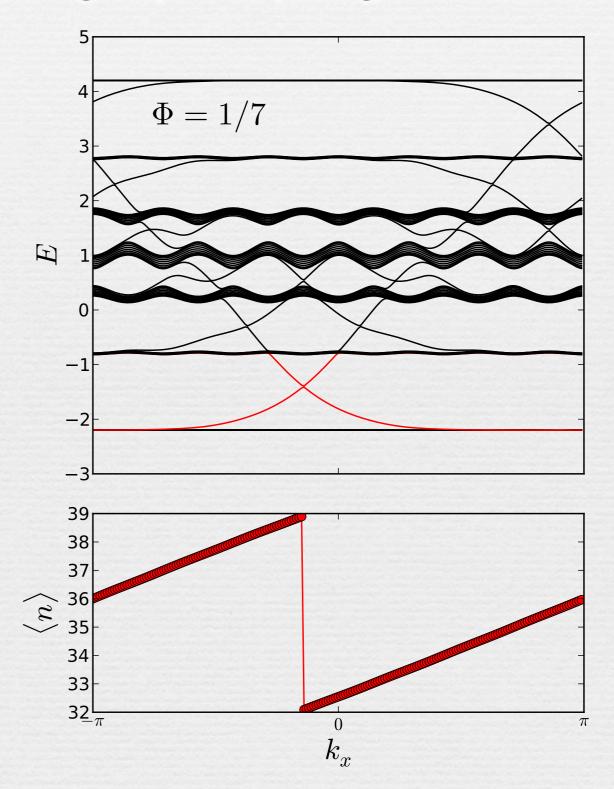


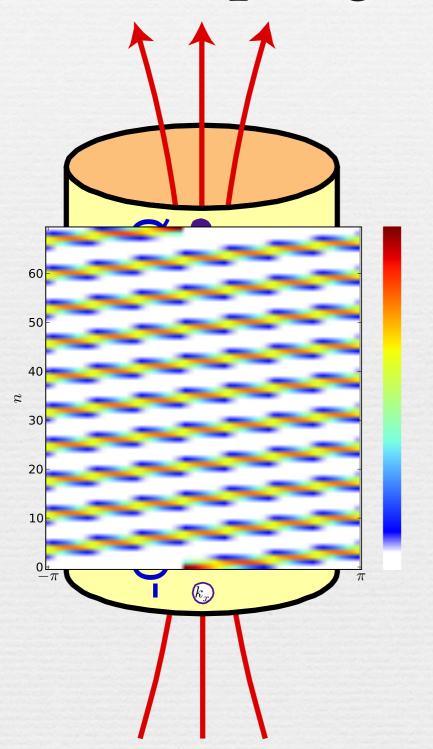
$$\Delta Q = \int_{0}^{T} \sigma_{xy} \frac{d\Phi}{dt} dt = \sigma_{xy} \frac{h}{e}$$

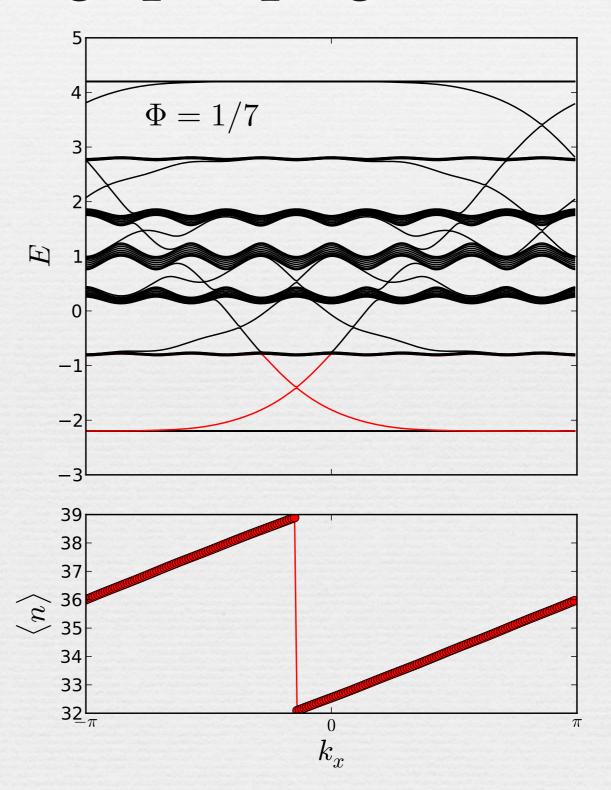
$$\Delta Q = ne \rightarrow \sigma_{xy} = n \frac{e^2}{h}$$





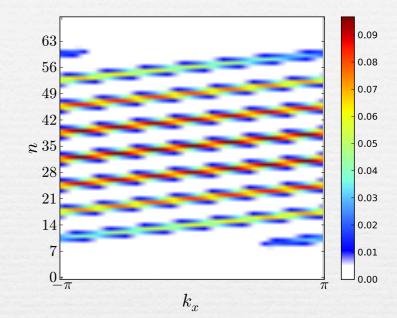






Quantitative Characterizations

- Slope
- * # of cuts (edge modes)
- COM along y-direction



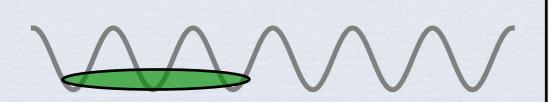
Bi-partition number of particle (trace index)

Salient features

- Bulk detection, does not require edge states
- $\rho(k_x, y)$ is nearly impossible to measure in solids, but accessible to cold atom toolbox
- Can be extended to interacting case

Fractional charge pumping

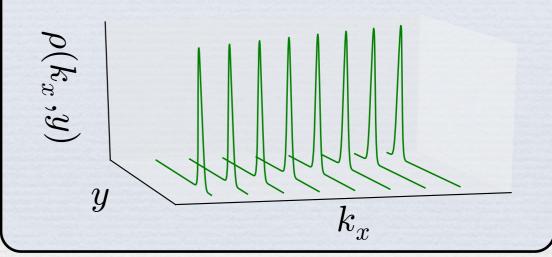
1D lattice



Interaction is crucial for opening an energy gap

2D Laughlin state

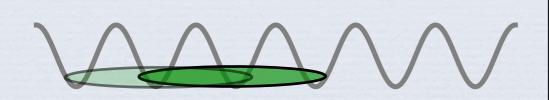
$$\rho(k_x, y) = \frac{\nu}{\sqrt{\pi}} e^{-(y - k_x)^2}$$



Can be used to detect FQHE and fractional Chern insulators realized in optical lattice Cooper et al, Yao et al, Nielsen et al

Fractional charge pumping

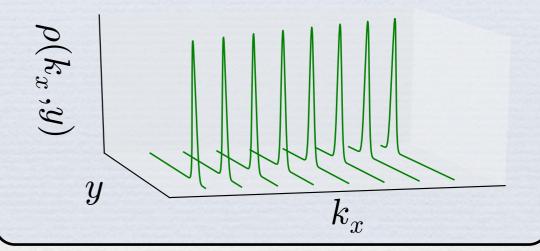
1D lattice



Interaction is crucial for opening an energy gap

2D Laughlin state

$$\rho(k_x, y) = \frac{\nu}{\sqrt{\pi}} e^{-(y - k_x)^2}$$



Can be used to detect FQHE and fractional Chern insulators realized in optical lattice Cooper et al, Yao et al, Nielsen et al

Laughlin states on lattice

 $\Phi_{\text{Laughlin}} = \Phi_{\text{Hofstadter}}^{1/\nu}$

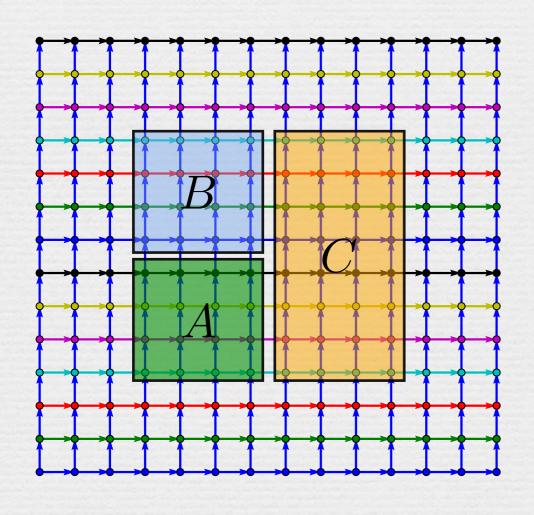
Laughlin states on lattice

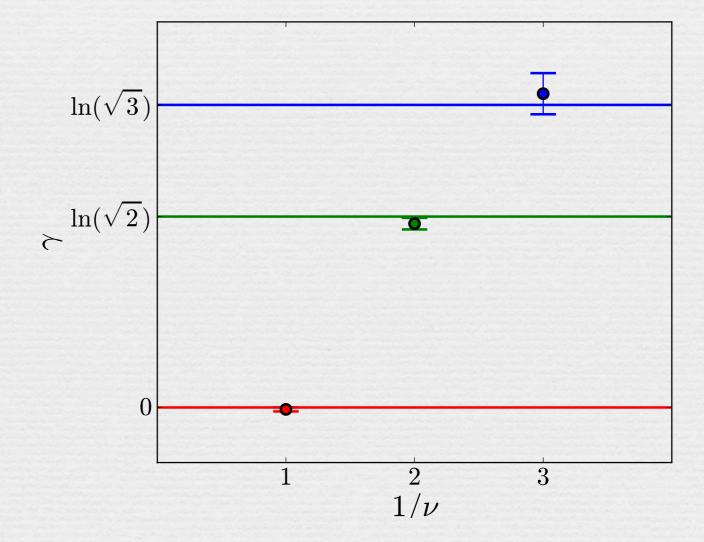
$$\Phi_{\text{Laughlin}} = \Phi_{\text{Hofstadter}}^{1/\nu}$$

Topological entanglement entropy

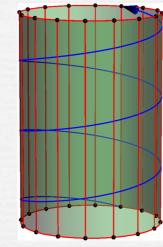
Preskill, Kitaev, Levin, Wen Zhang *et al*

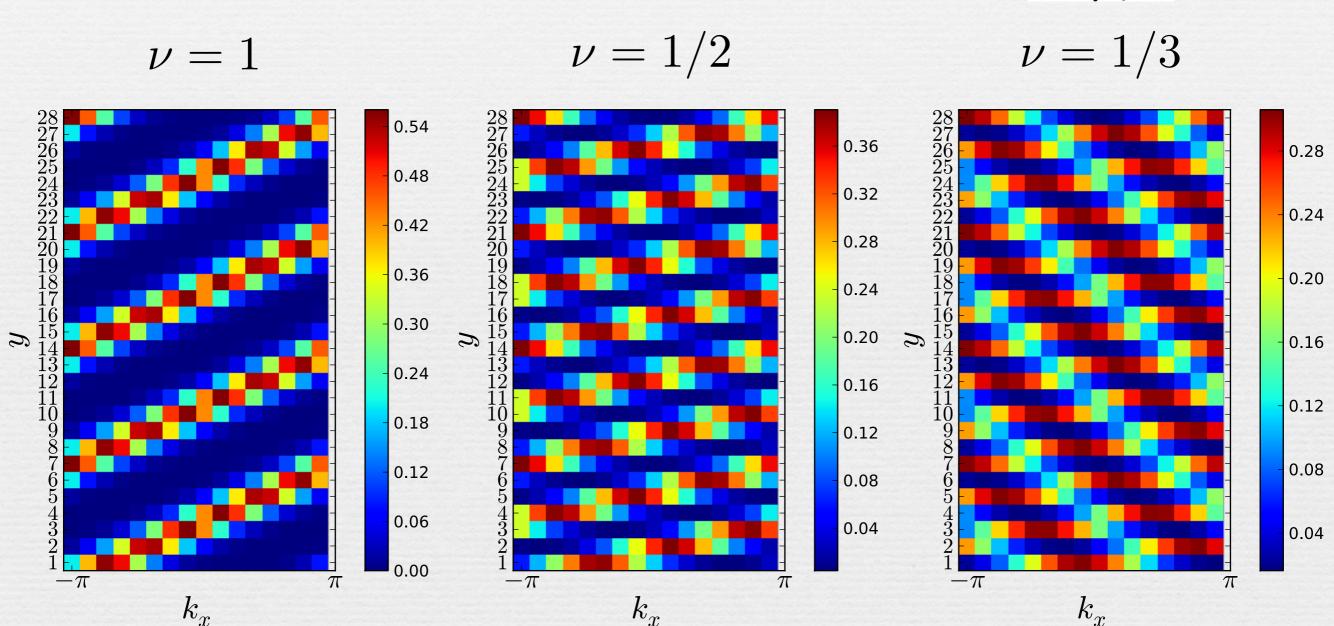
$$-\gamma = S_A + S_B + S_C - S_{AB} - S_{BC} - S_{AC} + S_{ABC}$$





Hybrid densities

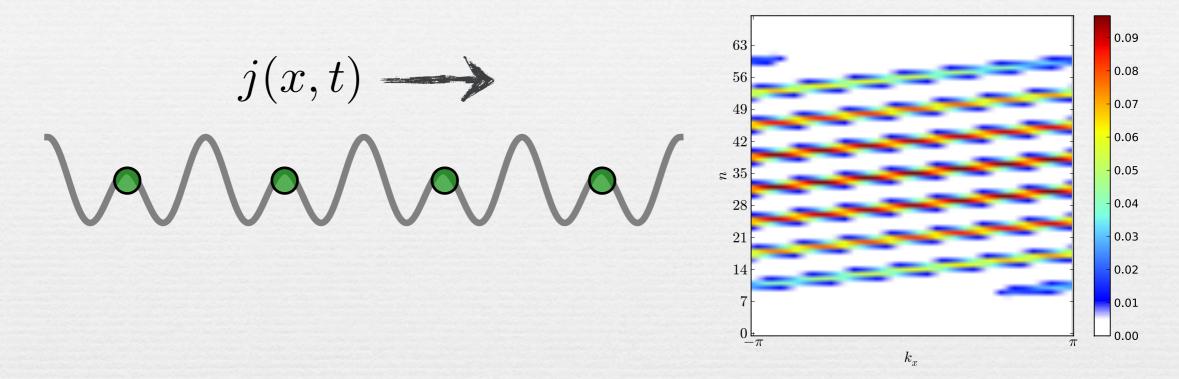




HTOF is also useful to detect FQHE state!

Summary

arXiv:1301.7435 PRL 110, 166802

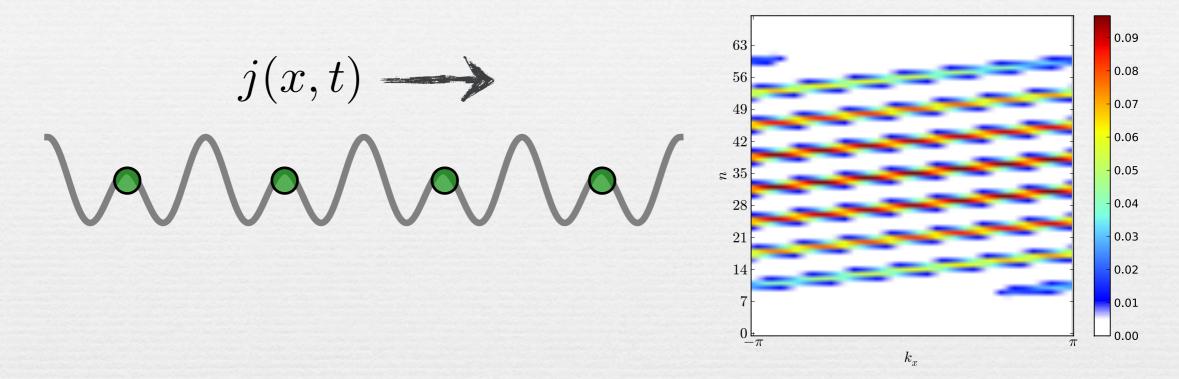


Topological charge pumping is a common thread unifies many features of topological states

Guideline for design and detection of topological phases in cold atom systems

Summary

arXiv:1301.7435 PRL 110, 166802



Topological charge pumping is a common thread unifies many features of topological states

Guideline for design and detection of topological phases in cold atom systems

You might try it in your lab!

Thank you!