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Figure 4: The scaled mutual information for various system
sizes at (a) T/t = 0.5 and (b) V/t = 2. The crossing point
agrees with transition point determined in Ref. [36] using cor-
relation functions.

ferent entanglement entropy scaling. We consider the
model (5) on a square lattice at half-filling [35, 36]. At
zero temperate it has CDW ground state for arbitrary
weak repulsive interaction because of Fermi surface nest-
ing. The CDW ground state in the strong coupling limit
can be interpreted as an “antiferromagnetic Ising” ground
state of a classical lattice gas. Upon increasing the tem-
perature, the CDW state undergoes an Ising phase tran-
sition. The transition temperature is exponentially small
in the weak coupling limit and is proportional to the in-
teraction strength V in the strong coupling limit. Figure
20 of Ref.[36] reports the T � V phase diagram of this
model.

We here revisit this problem from a quantum informa-
tion perspective by calculating the Renyi EE across the
phase transition. We consider a cylindrical subregion A
embedded in a L⇥L torus, Fig. 3(a) inset. The boundary
length is chosen to be `A = 2L and is independent of the
subregion size NA. Figure 3 shows the rank-2 Renyi EE
as a function NA at various temperature and interaction
strengths, which clearly exhibits two different character-
istic behaviors. At high temperature or weak interac-
tion the Renyi EE increases linearly with NA, indicating
a highly entangled state with a volume scaling law for
the EE. At low temperature or for strong interaction the
Renyi EE is strongly suppressed and is essentially flat
as NA increases, which is a characteristic behavior of a
gapful CDW state. This state is approximately a linear
superposition of two simple product states. Figure 3(a)
also suggests that simulations deep inside the CDW state
may not be ideal for the present method because the EE
is much smaller than the free fermion state. The fact that
we can nevertheless easily obtain correct results in this
region provides a stringent test of the proposed method.

We next proceed to a quantitative determination of
the phase boundaries. We consider the mutual informa-

tion [29, 37]

I2(A : B) = S2(⇢̂A) + S2(⇢̂B)� S2(⇢̂A[B) (14)

which cancels the bulk contribution in S2 and exhibits
boundary law even at nonzero temperature. Studies of
classical and quantum spin models [29, 38–40] show that
the scaled mutual information I2/`A crosses around the
transition point. We consider a region A with NA = L2/2
and the mutual information can be directly calculated
using two data points of S2 in the Fig.3.

Figure 4 shows the scaled mutual information versus
interaction strength and temperature for several system
sizes. The crossing points of I2/`A provide an estima-
tion of transition point Vc 2 [1.2, 1.3] at T = 0.5t or
Tc 2 [0.9, 1.0] at V = 2t, which is consistent with the
phase diagram reported in [36]. Similar to the case of
Ref. [29, 39], the curves of mutual information also cross
around 2Tc (not shown). These results indicate that our
approach can be a versatile tool to calculate the Renyi EE
and detect phase transitions in the interacting fermionic
models.

The proposed method allows efficient calculation of
the Renyi entanglement entropy of interacting fermions
by reallocating computational resources to interaction

corrections. Compare to the direct approaches [12, 13],
it can avoid sampling exponentially rare events caused
by fast increase of free fermion entanglement entropy.
The method is applicable to any fermionic system which
could be simulated with CTQMC method and may pro-
vide further insights to the unconventional quantum
critical point [32, 41] and the topological phase transi-
tions [17, 42, 43]. Our method is an ideal tool to offer
an entanglement perspective on the Kondo problem [44–
47], which is intimately related to the topological en-
tanglement entropy [14, 15] of two dimensional gapful
states [48]. Most interestingly, the ability to calculate en-
tanglement entropy in CTQMC offers a portal to study
entanglement in the framework of dynamical-mean-field-
theory [27, 49] and will shed light on entanglement prop-
erties of realistic correlated materials.
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Figure 1: Key concepts of the algorithm. (a) A configuration
with k1 = 2 vertices in the time interval [0,�) and k2 = 1
vertex in [�, 2�). The weights of this configuration are given
in Eqs. (8-9). (b) The extended configuration space combines
two ensembles Z2 and ZA. MC updates Eqs. (10-11) change
the vertex configuration and Eq. (12) switch between the two
ensembles.

the square bracket of Eq. (4), where we have introduced
a free parameter ⌘ to further control the MC dynam-
ics. For an optimal choice of ⌘ the sampled quantity
in the square bracket is close to one and �1

1�n ln(⌘) will

contribute mostly to �Sn. The fact that MC sampling
corrects an educated guess is another appealing feature
of the present algorithm. In practice, ⌘ can be deter-
mined from a rough estimate of �Sn (either based on
existing theory of EE scaling laws or in the MC equili-
bration steps). MC sampling will correct the estimate
and restore the exact result no matter what the initial
choice of ⌘ was.

Our method is general and applicable to any fermionic
system which is accessible to Monte Carlo simulations.
For illustration purposes we here focus on calculating
the rank-2 Renyi EE of an interacting spinless fermions
model
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In the CTQMC method, the partition function ratios are
expanded in terms of the interaction vertices [26, 27, 32],
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We can treat Eq. (6) and Eq. (7) on equal footing and
use the same configuration Ck=k1+k2 for each term in
the sampling. Fig. 1(a) shows an example configuration
with k = 3 vertices, where the imaginary times satisfy
0  ⌧1 = ⌧2 < . . . < ⌧2k1�1 = ⌧2k1 < �  ⌧2k1+1 =
⌧2k1+2 . . . < ⌧2k�1 = ⌧2k < 2�. Any of the configurations
Ck is a valid configuration in both ensembles, but with
different weights

wZA(Ck) = ⌘(�V )k det(Gk
ZA), (8)

wZ2(Ck) = (�V )k det(Gk1
Z ), det(Gk2

Z ) (9)

where Gk
ZA and G

k1(2)

Z are 2k ⇥ 2k and 2k1(2) ⇥ 2k1(2)
matrices whose matrix elements only depend on the non-
interacting Green’s functions [31]. On a bipartite lattice
with repulsive interaction V > 0 the weights are posi-
tive [32, 33] and there is no sign problem in the Monte
Carlo simulation.

We introduce an ensemble flag X 2 {ZA,Z2} and per-
form MC simulation in an extended ensemble [25, 34]

with the partition function (Z/Z0)2 + ⌘(ZA/ZA
0 ) =P

X
P

k,Ck wX(Ck). Now a MC configuration corresponds
to a given set of variables: the ensemble flag X, the per-
turbation order k and the vertex configurations. Two
kinds of MC updates are necessary to ensure ergodicity
of the sampling, shown in Fig.1(b). First, we keep the
ensemble flag X unchanged and update the vertex con-
figuration by either adding or removing one vertex. This
is done either by proposing a candidate vertex at a ran-
dom time (in the interval [0, 2�)) and a random bond
(out of Nb possible ones) or randomly choosing an exist-
ing vertex (out of k possible ones) to be removed. The
acceptance ratios are
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The second class of MC updates switch the ensemble X
to X0 while keeping the configuration Ck fixed. The ac-

CTQMC
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we were unable to find high-temperature-series expansions
for the antiferromagnetic Heisenberg-Ising model, so we
have simply taken the RPA coefficient of —, from Eq. (32)
and plotted
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FIG. 19. Scaled plot of the data of Fig. 18, H(m, ~)L
versus tL with P, =2.4.
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I 0-.
The points with error bars represent the results for the
condensation transition from our Monte Carlo simula-
tions. A weak-coupling theory is needed to complete the
phase diagram. As discussed in Sec. II, RPA-like calcula-
tions suggest that at small negative values of Vjt and low
temperatures an odd angular-momentum-pairing phase
exists. If indeed this is the case, it is likely to be an XY-
like phase with only topological order. Such a phase
poses real difficulties for numerical simulations, again
emphasizing the importance of developing a weak-
coupling theory.

0 5.-

I
I I t

0 I 2 3
V

FIG. 20. ( T, V) phase diagram. The short-dashed line corre-
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strong-coupling limit, and the dots with error bars are obtained
from the finite-size scaling analysis of the Monte Carlo data.
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