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Te
m
pe
ra
tu
re

�c

DisorderedOrdered

Quantum 
Critical Where is the QCP ?

What are the phases ?
What is the universality class ?
What are the experimental signatures ?



Quantum Phase Transitions
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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n⟩, the state Pk|n⟩ is an eigenstate of T ,

TPk|n⟩ =
1
L

L−1∑

j=0

e2πijk/LT j+1|n⟩ = e−2πik/LPk|n⟩ , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L − 1).

The normalization of the state Pk|n⟩ requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, ⟨n|P †
kPk|n⟩ = ⟨n|P 2

k |n⟩ = ⟨n|Pk|n⟩. For
most |n⟩ the states T j|n⟩ with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore ⟨n|Pk|n⟩ = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n⟩ = eiφn |n⟩ with a phase φn (usually 0 or
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Monte Carlo Method

F
ig

.
1
.1

0
B

u
ff
on

’s
ex

p
er

im
en

t
w

it
h

20
00

n
ee

d
le

s
(a

=
b)

.

1.1 Popular games in Monaco 9

are well behaved. Many successful Monte Carlo algorithms contain exact
sampling as a key ingredient.

Markov-chain sampling, on the other hand, forces us to be much more
careful with all aspects of our calculation. The critical issue here is the
correlation time, during which the pebble keeps a memory of the starting
configuration, the clubhouse. This time can become astronomical. In the
usual applications, one is often satisfied with a handful of independent
samples, obtained through week-long calculations, but it can require
much thought and experience to ensure that even this modest goal is
achieved. We shall continue our discussion of Markov-chain Monte Carlo
methods in Subsection 1.1.4, but want to first take a brief look at the
history of stochastic computing.

1.1.3 Historical origins

The idea of direct sampling was introduced into modern science in the
late 1940s by the mathematician Ulam, not without pride, as one can
find out from his autobiography Adventures of a Mathematician (Ulam
(1991)). Much earlier, in 1777, the French naturalist Buffon (1707–1788)
imagined a legendary needle-throwing experiment, and analyzed it com-
pletely. All through the eighteenth and nineteenth centuries, royal courts
and learned circles were intrigued by this game, and the theory was de-
veloped further. After a basic treatment of the Buffon needle problem,
we shall describe the particularly brilliant idea of Barbier (1860), which
foreshadows modern techniques of variance reduction.

Fig. 1.6 Georges Louis Leclerc, Count
of Buffon (1707–1788), performing the
first recorded Monte Carlo simulation,
in 1777. (Published with permission of
Le Monde.)

The Count is shown in Fig. 1.6 randomly throwing needles of length
a onto a wooden floor with cracks a distance b apart. We introduce

φ

xcenter0 b 2b 3b 4b

rcenter

Fig. 1.7 Variables xcenter and φ in Buffon’s needle experiment. The nee-
dles are of length a.

coordinates rcenter and φ as in Fig. 1.7, and assume that the needles’
centers rcenter are uniformly distributed on an infinite floor. The needles
do not roll into cracks, as they do in real life, nor do they interact with
each other. Furthermore, the angle φ is uniformly distributed between 0
and 2 . This is the mathematical model for Buffon’s experiment.

All the cracks in the floor are equivalent, and there are symmetries
xcenter ↔ b − xcenter and φ ↔ −φ. The variable y is irrelevant to the

Buffon 1777

The first recorded Monte Carlo simulation

Statistical Mechanics: 
Algorithms and Computations
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instead, only water molecules with different amounts of 
excitation energy. These may follow any of three paths: 

(a) The excitation energy is lost without dissociation 
into radicals (by collision, or possibly radiation, as in 
aromatic hydrocarbons). 

(b) The molecules dissociate, but the resulting radi-
cals recombine without escaping from the liquid cage. 

(c) The molecules dissociate and escape from the 
cage. In this case we would not expect them to move 
more than a few molecular diameters through the dense 
medium before being thermalized. 

In accordance with the notation introduced by 
Burton, Magee, and Samuel,22 the molecules following 

22 Burton, Magee, and Samuel, J. Chern. Phys. 20, 760 (1952). 

THE JOURNAL OF CHEMICAL PHYSICS 

paths (a) and (b) can be designated H 20* and those 
following path (c) can be designated H 20t. It seems 
reasonable to assume for the purpose of these calcula-
tions that the ionized H 20 molecules will become the 
H 20t molecules, but this is not likely to be a complete 
correspondence. 

In conclusion we would like to emphasize that the 
qualitative result of this section is not critically de-
pendent on the exact values of the physical parameters 
used. However, this treatment is classical, and a correct 
treatment must be wave mechanical; therefore the 
result of this section cannot be taken as an a priori 
theoretical prediction. The success of the radical diffu-
sion model given above lends some plausibility to the 
occurrence of electron capture as described by this 
crude calculation. Further work is clearly needed. 
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A general method, suitable for fast computing machines, for investigatiflg such properties as equations of 
state for substances consisting of interacting individual molecules is described. The method consists of a 
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere 
system have been obtained on the Los Alamos MANIAC and are presented here. These results are compared 
to the free volume equation of state and to a four-term virial coefficient expansion. 

I. INTRODUCTION 

T HE purpose of this paper is to describe a general 
method, suitable for fast electronic computing 

machines, of calculating the properties of any substance 
which may be considered as composed of interacting 
individual molecules. Classical statistics is assumed, 
only two-body forces are considered, and the potential 
field of a molecule is assumed spherically symmetric. 
These are the usual assumptions made in theories of 
liquids. Subject to the above assumptions, the method 
is not restricted to any range of temperature or density. 
This paper will also present results of a preliminary two-
dimensional calculation for the rigid-sphere system. 
Work on the two-dimensional case with a Lennard-
Jones potential is in progress and will be reported in a 
later paper. Also, the problem in three dimensions is 
being investigated. 

* Now at the Radiation Laboratory of the University of Cali-
fornia, Livermore, California. 

II. THE GENERAL METHOD FOR AN ARBITRARY 
POTENTIAL BETWEEN THE PARTICLES 

In order to reduce the problem to a feasible size for 
numerical work, we can, of course, consider only a finite 
number of particles. This number N may be as high as 
several hundred. Our system consists of a squaret con-
taining N particles. In order to minimize the surface 
effects we suppose the complete substance to be periodic, 
consisting of many such squares, each square contain-
ing N particles in the same configuration. Thus we 
define dAB, the minimum distance between particles A 
and B, as the shortest distance between A and any of 
the particles B, of which there is one in each of the 
squares which comprise the complete substance. If we 
have a potential which falls off rapidly with distance, 
there will be at most one of the distances AB which 
can make a substantial contribution; hence we need 
consider only the minimum distance dAB. 

t We will use two-dimensional nomenclature here since it 
is easier to visualize. The extension to three dimensions is obvious. 
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η = 0.48 η = 0.72

Fig. 2.25 Snapshots of 256 hard disks in a box of size 1 ×
√

3/2 with
periodic boundary conditions (from Alg. 2.9 (markov-disks)).

suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.
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suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.

102 Hard disks and spheres

η = 0.48 η = 0.72

Fig. 2.25 Snapshots of 256 hard disks in a box of size 1 ×
√

3/2 with
periodic boundary conditions (from Alg. 2.9 (markov-disks)).

suppose that below the critical density only liquid-like configurations ex-
ist, and above the transition only solid ones. This first guess is wrong at
low density because a crystalline configuration at high density obviously
also exists at low density; it suffices to reduce the disk radii. Disordered
configurations (configurations without long-range positional or orienta-
tional order) also exist right through the transition and up to the high-
est densities; they can be constructed from large, randomly arranged,
patches of ordered disks. Liquid-like, disordered configurations and solid
configurations of disks thus do not disappear as we pass through the
liquid–solid phase transition density one way or the other; it is only the
balance of statistical weights which is tipped in favor of crystalline con-
figurations at high densities, and in favor of liquid configurations at low
densities.

The Markov-chain hard-disk algorithm is indeed very powerful, be-
cause it allows us to sample configurations at densities and particle
numbers that are far out of reach for direct-sampling methods. How-
ever, it slows down considerably upon entering the solid phase. To see
this in a concrete example, we set up a particular tilted initial condition
for a long simulation with Alg. 2.9 (markov-disks) (see Fig. 2.26). Even
25 billion moves later, that is, one hundred million sweeps (attempted
moves per disk), the initial configuration still shows through in the state
of the system. A configuration independent of the initial configuration
has not yet been sampled.

We can explain—but should not excuse—the slow convergence of the
hard-disk Monte Carlo algorithm at high density by the slow motion
of single particles (in the long simulation of Fig. 2.26, the disk k has
only moved across one-quarter of the box). However, an equilibrium
Monte Carlo algorithm is not meant to simulate time evolution, but
to generate, as quickly as possible, configurations a with probability
π(a) for all a making up the configuration space. Clearly, at a density
η = 0.72, Alg. 2.9 (markov-disks) fails at this task, and Markov-chain
sampling slows down dangerously.



Quantum to Classical Mapping
Z = Tr

⇣
e��Ĥ
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Modern QMC Methods

A. W. Sandvik et al, PRB, 43, 5950 (1991)N. V. Prokof ’ev et al, JETP, 87, 310 (1998) Gull et al, RMP, 83, 349 (2011)
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Sign problem

What about a negative probability ?  

There has always been surprise… 

General solution implies P=NP    

But, do we need a general solution ?   

Troyer and Wiese,  2005

Berg et al, Science, 2012 

Challenges

Huffman and Chandrasekharan, PRB, 2014 

“designer” 
Hamiltonian

new solution to 
the sign problem



Spinless t-V Model

Maps to an XXZ model Orders at infinitesimal V due 
to Fermi surface nestingVc/t = 2

Ĥ = �t
X

hi,ji

⇣
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Spinless t-V Model

Maps to an XXZ model Orders at infinitesimal V due 
to Fermi surface nesting

Critical point ? Universality class ? C

Vc/t = 2
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w(C) = detM

No sign problem
model at 

But, h

w(C) = detM" ⇥ detM#

= | detM"|2 � 0

A 30 years old sign problem

e.g. spinless t-V model
 Meron cluster approach, Chandrasekharan and Wiese, PRL, 1999

Wu et al, PRB, 2005

Kramers pairs

Gubernatis et al, PRB, 1985Scalapino et al, PRB, 1984

up to 8*8 square lattice and T≥ solves sign problem only for V ≥ 2t



Determinant = Pfaffian2

For real skew-symmetric Huffman and Chandrasekharan, PRB, 2014 

detM = (pfM)2 � 0

SU(3)split Dirac cone strain

Small idea solves big problems!

spinless fermions
LW and Troyer, PRL 2014
LW, Corboz, Troyer, NJP 2014 (IOPselect)
LW, Iazzi, Corboz, Troyer, 1501.00986, 
PRB in press (Editors' Suggestion)

MT = �M

Appears naturally in 
modern CT-QMC 



Observables & Scaling Ansatz
±1 for A(B) sublattice
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Observables & Scaling Ansatz
±1 for A(B) sublattice

up to 450 sites2L2

Scalings ansatz close to the QCP
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Observables & Scaling Ansatz

z = 1
relativistic invariance
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Binder Ratio

R =
M4

(M2)2

LW, Corboz, Troyer, NJP 16, 103008 (2014)



Data Collapse

Vc/t = 1.356(1)

⌫ = 0.80(3)

⌘ = 0.302(7)

M2L
z+⌘ = F(L1/⌫(V � Vc))

M4L
2z+2⌘ = G(L1/⌫(V � Vc))

* Errorbars �2 + 1

LW, Corboz, Troyer, NJP 16, 103008 (2014)



Gross-Neveu-Yukawa Theory
ε Rosenstein et al, PLB, 1993

⌫ = 0.797

functional renormalization group Rosa et al, PRL,2001 Höfling et al, PRB, 2002

𝜈
η

⌘ = 0.502

⌫ = 0.80(3)

⌘ = 0.302(7)

Honeycomb

⌫ = 0.738 ⇠ 0.927 ⌘ = 0.525 ⇠ 0.635

* Field theory calculations are based on 2-flavors of 
2-component Dirac fermions with the 
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Figure 1: Honeycomb lattice
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Updates: results at T=0
9

FIG. 5. The QMC results for the CDW structure factor com-
pared with the square of CDW order parameter calculated
using iPEPS. For V/t = 1 the CDW order parameter van-
ishes for bond dimensions D > 8 in iPEPS. For V/t = 1.4
we used a linear fit in 1/D of the CDW order parameter to
obtain an estimate in the infinite D limit (see Ref. 51 for more
details).

atically improved by increasing the bond dimension D.
Figure 4 shows the ground state energy per site versus
1/L together with iPEPS results versus 1/D. QMC re-
sults for systems with periodic boundary conditions and
those anti-periodic boundary condition along x-direction
approach the L ! 1 limit from different sides, thus
bracketing the ground state energy in the thermodynamic
limit. Extrapolation of all data yields consistent results.
Figure 5 shows the CDW structure factor M

2

versus 1/L,
which extrapolates to the square of the CDW order pa-
rameter. iPEPS on the other hand can directly mea-
sure the order parameter since the symmetry is spon-
taneously broken for an infinite system. Extrapolation
again yields consistent results and shows the system or-
ders for V/t = 1.4 but not at V/t = 1.0.

B. Fermionic Quantum Critical Point

We finally apply the projector LCT-INT to study the
quantum critical point of spinless t-V model on a hon-
eycomb lattice, which we previously studied by CT-INT
simulations.51 Our calculations go beyond the previous
results in two aspects. We can directly address the T = 0

quantum critical point using the projection version of
LCT-INT and we are able to reach larger system sizes

FIG. 6. (a) Scaled CDW structure factor of different system
sizes cross at the transition point (b) Scaled CDW structures
factor collapse on to a single curve when plotted against scaled
interaction strength.

up to L = 18. Since a detailed finite size scaling study is
beyond the scope of this paper, we use the critical values
obtained in Ref. 51 and check for consistency. The CDW
structure factor should follow the scaling ansatz

M
2

Lz+⌘
= F

⇣
(V � Vc)L

1/⌫
⌘
, (36)

where we previously found z + ⌘ = 1.302, ⌫ = 0.8 and
Vc/t = 1.356.51 Figure 6(a) shows the scaled CDW struc-
ture factor M

2

Lz+⌘ where all curves cross around Vc

when using these critical exponents. Scaling of the x-axis
using (V � Vc)L1/⌫ yields good data collapse, shown in
Figure 6(b). We conclude that the new zero temperature
results on larger system size are consistent with previous
findings concerning critical point and critical exponents
in Ref. 51.

V. DISCUSSION

In this paper we presented details of the ground-state
version of the LCT-INT algorithm of Ref. 30. As a
continuous-time QMC algorithm it eliminates the Trot-
ter error due to time discretization of the BSS algorithm
while still keeping the favorable linear scaling with pro-
jection time and interacting strength. It is therefore well
suited for simulations of the ground state of strongly cor-
related lattice fermions.

Although the LCT-INT algorithms30 and the projec-
tion version described here share operational similari-

L Majorana
LW, Iazzi, Corboz, Troyer, 1501.00986

Li, Jiang and Yao, 1408.2269
Li, Jiang and Yao, 1411.7383

3

MQMC to explore the ground state properties of the sys-
tem. In the projector QMC, a trial wave function | T i
is introduced and after projection the ground state | 

0

i
can be obtained. Consequently, the expectation values
of observable Ô is:

h 
0

| Ô | 
0

i
h 

0

| 
0

i = lim
✓!1

h T | e�✓HÔe�✓H | T i
h T | e�2✓H | T i

, (6)

In our simulations, we use an Slater-determinant wave
function as the trial wave function  T . Similarly, we can
prove that projector MQMC is also free from fermion-
sign-problem in the parameter region where V > 0, as
shown in details in Ref.[34].

IV. NUMERICAL MQMC RESULTS

A. The CDW transition on the honeycomb lattice

We have performed fermion-sign-free MQMC simula-
tions to study the spinless fermion model on the hon-
eycomb lattice with NN repulsive interaction V . When
V > Vc, the ground state develops a finite CDW ordering
which breaks the inversion symmetry of the model. To
find the critical interaction Vc of the CDW phase tran-
sition, we compute the CDW structure factor on a finite
lattice using MQMC:

M
2

=
X

ij

⌘i⌘j
N2

s

⌦
(ni �

1

2
)(nj �

1

2
)
↵
, (7)

where Ns = 2L2 is the total number of lattice sites
and ⌘i = ±1 for i 2 A(B) sublattice. The CDW or-
der parameter �

CDW

can be obtained through �2

CDW

=
limL!1 M

2

. We perform finite-size scaling analysis for
M

2

by fitting M
2

to a second-order polynomial in 1/L,
namely a

0

+ a
1

L + a
2

L2

, and then extrapolate to the thermo-
dynamics (L ! 1) limit to identity whether the system
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FIG. 1. (a) For the honeycomb model, finite-size scaling of
the CDW structure factor M

2

obtained in the projector (zero-
temperature) MQMC simulations on lattice of Ns = 2L2 sites
for various V and L = 6 ⇠ 21. (b) The Binder ratios B ⌘
M

4

/M2

2

for various interaction V and various L = 9 ⇠ 21, are
plotted. The crossing of Binder ratios shows that the critical
interaction for the CDW transition is Vc = 1.355(1).

is the semimetal or CDW phase. The results are shown
in Fig. 1(a) for various V . The extrapolation of M

2

to
L = 1 shows that the critical value Vc of the CDW tran-
sition should be between 1.34 and 1.38. Note that the
critical point Vc determined in this way is normally over-
estimated for the following reason. At the critical point
V = Vc, M2

(L) ⇠ 1/L1+⌘ for large L, where ⌘ > 0 is
the anomalous dimension of the order parameter. When
using a

0

+ a
1

L + a
2

L2

to fit M
2

(L) at V = Vc, negative
a
0

is generically obtained, which indicates that this fit-
ting could somewhat overestimate Vc when L is not large
enough.
To obtain Vc more accurately, we further compute the

quartic of CDW order parameter M
4

defined as

M
4

=
X

ijkl

⌘i⌘j⌘k⌘l
N4

s

⌦
(ni �

1

2
)(nj �

1

2
)(nk � 1

2
)(nl �

1

2
)
↵
,

and use the method of Binder ratio B ⌘ M
4

M2

2

to determine

the critical point of the CDW phase transition. Accord-
ing to the following scaling functions for M

2

and M
4

:

M
2

= L�1�⌘F(L1/⌫(V � Vc)), (8)

M
4

= L�2�2⌘G(L1/⌫(V � Vc)), (9)

where we have implicitly assumed the dynamical critical
exponent z = 1 for the CDW transition in the current
model, the Binder ratios of su�ciently large L should
cross at V = Vc. The calculated Binder ratios for dif-
ferent V and di↵erent L are shown in Fig. 1(b), which
clearly show that Vc ⇡ 1.355, which is consistent with
the one obtained in Ref.[30].
After obtaining Vc for the CDW transition, we can fur-

ther compute the independent critical exponents ⌘ and ⌫
which are critical exponents regarding correlation func-
tions. Other critical exponents such as � may be ob-
tained from ⌘ and ⌫ through hyper-scaling relations. We
use two di↵erent methods to obtain ⌘. First, we per-
form a finite-size scaling analysis of M

2

according to the
scaling function: M

2

(L) ⇠ L�1�⌘ at V = Vc. Second,
we compute the density-density correlation C

max

(L) =

FIG. 2. (a) For the honeycomb model, the anomalous dimen-
sion of the CDW order parameter ⌘ = 0.45(2) is obtained from
the finite-size scaling of C

max

(L) at V = Vc with L = 12 ⇠ 24.
(b) Similarly, ⌘ = 0.43(2) is obtained from finite-size scaling
of M

2

(L) of L = 12 ⇠ 24 at criticality.
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FIG. 3. (a) For the honeycomb model, collapsing of data
points occurs when ⌫ = 0.77. (b) The CDW order parameter
at various V . We obtain � = 0.60(3) from fitting the data to
�

CDW

⇠ (V � Vc)
� .

h(ni�1/2)(ni+~r
max

�1/2)i where ~r
max

= (L/2, L/2) is the
largest possible separation between two sites in the lattice
with periodic boundary conditions. At criticality, this
correlation decays in power-law as C

max

(L) ⇠ 1/L1+⌘

for su�ciently large L. In Fig. 2(a) and Fig. 2(b), we
plot M

2

(L) and C
max

(L) versus 1/L, respectively, in a
log-log way, and then fit them by a linear function whose
slope is 1 + ⌘. From the fitting of C

max

(L), we obtain
⌘ = 0.45(2). Slightly smaller but similar ⌘ within the
error bar is obtained from the fitting of M

2

(L).
We are ready to obtain the critical exponent ⌫ using

M
2

L1+⌘ = F(L1/⌫(V�Vc)) where F is a scaling function.
There exists an appropriate ⌫ such that di↵erent points
(M

2

L1+⌘, L1/⌫(V � Vc)) of various V around Vc and dif-
ferent L should collapse on a single curve F even though
F is an unknown function. As shown in Fig. 3(a), all data
points of di↵erent V and L collapse best to a single curve
when we choose ⌫ = 0.77(3). From the scaling relation

� = ⌫(1+⌘)
2

, we obtain � = 0.58, which is also consistent
with the value 0.60 obtained by fitting the order param-
eter �

CDW

⇠ (V � Vc)� , as shown in Fig. 3(b). Conse-
quently, we have shown that ⌘ = 0.45(2) and ⌫ = 0.77(3)
for the N = 2 chiral-Ising universality class in 2+1D,
which are reasonably close to ⌘ ⇡ 0.50 but have slight
discrepancy with ⌫ ⇡ 0.88, obtained in the two-loop RG
calculations in the ✏ = 4�D expansion[17].

B. The CDW transition on the ⇡-flux square lattice

It has been known that fermions on the square lat-
tice with ⇡-flux per plaquette also feature dispersions of
massless Dirac fermions. Spinless fermions on the square
lattice with ⇡-flux per plaquette and with NN repulsive
interactions are described by the same Hamiltonian as
Eq. (1) in which tij = ei✓ij t with

P
hiji2⇤ ✓ij = ⇡ (mod

2⇡). At zero temperature, a similar CDW transition oc-
curs when the NN interaction V exceeds a critical value
Vc and this CDW transition is in the same universality
class of the N = 2 chiral-Ising transition in 2+1D. To

FIG. 4. MQMC simulations of the ⇡-flux square model. (a)
Finite-size scaling of the CDW structure factor M

2

obtained
in projector (zero-temperature) MQMC simulations on lat-
tice of Ns = 2L2 sites for various V and L = 6 ⇠ 21; (b) The
Binder ratios B ⌘ M

4

/M2

2

for various V and L = 9 ⇠ 21.
The crossing of Binder ratios shows that the critical interac-
tion for the CDW transition is Vc = 1.296(1); (c) The anoma-
lous dimension of the CDW order parameter ⌘ = 0.43(2) is
obtained from the finite-size scaling of C

max

(L) at criticality.
(d) Similarly, ⌘ = 0.42(2) is obtained from finite-size scaling
of (M

2

(L)) at criticality. They are consistent within error bar.
(e) Collapsing of data points occurs when ⌫ = 0.79; (f) The
CDW order parameter at various V . We obtain � = 0.67(4)
from fitting the data to �

CDW

⇠ (V � Vc)
� .

investigate the quantum critical behavior of this CDW
transition, we performed fermion-sign-free MQMC simu-
lations of this model, did similar data analysis, and ex-
pected to obtain identical critical behaviors. The results
are shown in Fig. 4. From the Binder ratio analysis, we
obtain Vc = 1.296(1). Moreover, finite-size scaling ren-
ders ⌘ = 0.43(2), ⌫ = 0.79(4), and � = 0.67(4), which
are consistent with the corresponding values obtained for
the honeycomb model, within error bar.

Consistent with finite-T results ⌘ = 0.45(2)⌫ = 0.77(3)Vc/t = 1.355(1)

Iazzi, Troyer, 1411.0683 
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No need for local order parameter e.g. Kitaev model, Abasto et al 
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Fidelity Susceptibility Made Simple !

�F =
hkLkRi � hkLi hkRi

2�2

p 1
1

1
0 9 8 7 6 5 4 3 2 1 0

v
X

(v
)

l=
0

0481
2

1
62
0

2
4

2
8

3
2

3
6

4
0

4
4

3
5

3
8-3
4

4
6--1
9

1
43
1-1
8

v
X

(v
)

l=
1

1591
3

1
72
1

2
5

2
9

3
3

3
7

4
1

4
5

33
9-24
7--61
57-3
0

v
X

(v
)

l=
2

261
0

1
4

1
82
2

2
6

3
0

3
4

3
8

4
2

4
6

1
3

2
9-3
2

4
4--4
51
24-1
6

v
X

(v
)

l=
3

371
1

1
5

1
92
3

2
7

3
1

3
5

3
9

4
3

4
7

13
7-3
3

2
8--3
605-1
7

FI
G
U
R
E
57
.
Li
nk
ed
ve
rte
x
st
or
ag
e
of
th
e
co
nfi
gu
ra
tio
n
in
Fi
g.
55
.I
n
th
e
gr
ap
hi
ca
lr
ep
re
se
nt
at
io
n
to

th
e
le
ft,
co
ns
ta
nt
sp
in
st
at
es
be
tw
ee
n
op
er
at
or
s
ha
ve
be
en
re
pl
ac
ed
by
lin
es
(li
nk
s)
co
nn
ec
tin
g
th
e
sp
in
s

ju
st
be
fo
re
an
d
af
te
r
th
e
op
er
at
or
ac
ts
.T
he
lin
ks
ca
n
be
st
or
ed
in
a
lis
tX

(v
),
w
he
re
th
e
fo
ur
el
em
en
ts

v
=
4p

+
l,
l=

0,
1,
2,
3,
co
rr
es
po
nd
to
th
e
le
gs
(w
ith
th
e
nu
m
be
rin
g
co
nv
en
tio
n
sh
ow
n
in
Fi
g.
58
)o
ft
he

ve
rte
x
at
po
si
tio
n
p
in
th
e
se
qu
en
ce
S L
.F
or
tw
o
lin
ke
d
le
gs
v
an
d
v′
,X

(v
)
=
v′
an
d
X

(v
′ )

=
v.

0
1

2
3

0
1

2
3

0
1

2
3

0
1

2
3

FI
G
U
R
E
58
.
A
llo
w
ed
ve
rti
ce
sf
or
th
ei
so
tro
pi
c
S

=
1/
2
H
ei
se
nb
er
g
m
od
el
.T
he
nu
m
be
rin
g
l=

0,
1,
2,
3

of
th
e
ve
rte
x
le
gs
co
rr
es
po
nd
st
o
th
e
po
si
tio
n
v

=
4p

+
l,
in
lin
ke
d-
lis
ts
to
ra
ge
ill
us
tra
te
d
in
Fi
g.
57
.

ad
di
tio
na
lv
er
tic
es
[1
90
,3
3]
(a
nd
th
e
al
go
rit
hm

di
sc
us
se
d
he
re
w
ou
ld
th
en
al
so
ha
ve
to

be
m
od
ifi
ed
).
A
lth
ou
gh
th
e
sp
in
st
at
es
at
th
e
fo
ur
le
gs
un
iq
ue
ly
id
en
tif
y
th
e
ve
rti
ce
s,
w
e

w
ill
co
nt
in
ue
to
us
e
al
so
th
e
op
en
an
d
so
lid
ba
rs
in
pi
ct
ur
es
,t
o
in
di
ca
te
di
ag
on
al
an
d

of
f-
di
ag
on
al
ve
rti
ce
s,
re
sp
ec
tiv
el
y,
fo
ra
dd
ed
cl
ar
ity
.

Fo
r
a
gi
ve
n
po
si
tio
n
p
in
th
e
op
er
at
or
se
qu
en
ce

S L
,t
he
co
rr
es
po
nd
in
g
lis
te
le
m
en
t

s(
p)
te
lls
us
th
e
op
er
at
or
ty
pe
(d
ia
go
na
lo
r
of
f-
di
ag
on
al
)
an
d
th
e
bo
nd

b
on
w
hi
ch
it

ac
ts
(a
s
ex
pl
ai
ne
d
in
Fi
g.
55
).
A
sw
ill
be
co
m
e
cl
ea
rb
el
ow
,a
lo
ng
w
ith
th
is
in
fo
rm
at
io
n,

w
e
on
ly
ha
ve
to
st
or
e
th
e
co
nn
ec
tiv
ity
of
th
e
ve
rti
ce
s,
no
tt
he
ir
sp
in
st
at
es
.T
he
lin
ks

al
lo
w
in
g
us
to
ju
m
p
be
tw
ee
n
co
nn
ec
te
d
ve
rte
x
le
gs
ar
e
st
or
ed
as
a
lis
tX

(v
),
as
ex
pl
ai
ne
d

in
Fi
g.
57
.F
or
cl
ar
ity
of
th
e
ill
us
tra
tio
n,
th
e
on
e
di
m
en
si
on
al
lis
th
as
he
re
be
en
ar
ra
ng
ed

in
fo
ur
co
lu
m
ns
,w
ith
el
em
en
ts
la
be
le
d
v

=
4p

+
l,
co
rr
es
po
nd
in
g
to
ea
ch
ty
pe
of
le
g,

l=
0,
1,
2,
3,
w
ith
th
e
la
be
lin
g
sp
ec
ifi
ed
in
Fi
g.
58
.W

e
w
ill
la
te
r
de
sc
rib
e
an
ef
fic
ie
nt

w
ay
to
co
ns
tru
ct
th
is
lin
ke
d
lis
t,
gi
ve
n
th
e
op
er
at
or
se
qu
en
ce
.F
or
no
w
,i
ti
ss
uf
fic
ie
nt
to

kn
ow

th
at
fo
ra
gi
ve
n
op
er
at
or
at
lo
ca
tio
n
p
in
th
e
se
qu
en
ce
,t
he
po
si
tio
n
of
its

l:t
h
le
g

in
th
e
lin
ke
d
ve
rte
x
lis
ti
s
v

=
4p

+
l.
Th
is
le
g
is
lin
ke
d
to
an
ot
he
rv
er
te
x
le
g
w
ith
lis
t

ad
dr
es
sv

′ =
X

(v
).
Th
is
ki
nd
of
st
ru
ct
ur
ec
on
st
itu
te
sa
do
ub
ly
-li
nk
ed
(b
i-d
ire
ct
io
na
l)
lis
t,

27
6

D
ow

nl
oa

de
d 

19
 J

un
 2

01
3 

to
 1

29
.1

32
.2

11
.1

29
. T

hi
s 

ar
tic

le
 is

 c
op

yr
ig

ht
ed

 a
s 

in
di

ca
te

d 
in

 th
e 

ab
st

ra
ct

. R
eu

se
 o

f A
IP

 c
on

te
nt

 is
 s

ub
je

ct
 to

 th
e 

te
rm

s 
at

: h
ttp

://
pr

oc
ee

di
ng

s.
ai

p.
or

g/
ab

ou
t/r

ig
ht

s_
pe

rm
is

si
on

s

kL kR kL kR

Stochastic Series Expansion  

  (quantum spins)

Determinantal Methods  

(fermions)

Worldline Algorithms 

(bosons) 

Time

Sp
ac
e

kL kR

LW, Liu, Imriška, Ma and Troyer, 1502.06969 



Bose-Hubbard Model

Mott 
Insulator Superfluid

Divergence of fidelity susceptibility 
correctly single out the quantum critical point
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Bose-Hubbard Model

Mott 
Insulator Superfluid

Divergence of fidelity susceptibility 
correctly single out the quantum critical point

lows efficient sampling of the single-particle Green function.
Precise data for the Green function enable us to carefully
trace out the critical behavior of the system and resolve the
phase diagram in the region of small insulating gaps, !"J.
We also present data for the effective mass of particle and
hole excitations inside the insulating phase. Effective masses
characterize the phase transition away from the tip of the
lobe. Here the transition is described by the physics of the
weakly interacting Bose gas in the limit of vanishing density
!10".

In order to completely characterize the system the full
phase diagram in the parameter space ## /U ,J /U ,T /J$,
where T is the temperature, is needed. Here we limit our-
selves to studying ground state properties and calculating the
critical temperature for the SF-normal transition at unity fill-
ing factor. An exhaustive finite temperature study of the sys-
tem is in progress in another group !12".

We now turn to the presentation of our results. The pro-
cedure used to determine the ground state phase diagram and
extract effective masses of particle and hole excitations from
the Green function was discussed in detail in Ref. !13". In
Fig. 1 we present results for the ground state phase diagram
corresponding to unity filling. The inset shows the region
around the tip. Circles represent the simulation data while
dashed lines are obtained from the finite size scaling
analysis. Simulations were done for linear system sizes
L=10,20,40,80 #all lengths are measured in units of lattice
step$. We do not see any significant size effect up to J /U
%0.057. In order to extract the position of the critical point
at the tip of the lobe and determine the extension of the
critical region, the standard finite size scaling argument was
used #see Ref. !13"$, with the critical exponent for the corre-
lation length $=0.6715. The finite size scaling of the energy
gap is presented in Fig. 2. One can directly read the position
of the critical point from the intersection of the curves:

#J/U$c = 0.05974#3$ #n = 1$ . #3$

Equation #3$ and Fig. 1 constitute the most precise quantum
Monte Carlo simulation for the Hamiltonian #1$, which is in

perfect agreement with the result of Ref. !1", where the au-
thors carried out a strong coupling expansion up to 13th
order. Note that the critical region in Fig. 1 is resolved with
accuracy "J, i.e., for gaps !%J, which is crucial for studies
of the emerging relativistic physics at the lobe tip.

In Fig. 3 we plot effective masses for particle #circles$ and
hole #squares$ excitations. Dispersion relations were fitted by
a parabola, with the exception of J /U=0.059 where we used
a relativistic dispersion relation. Close to the tip of the dia-
gram, the action is isotropic in space and imaginary time,
giving rise to a relativistic behavior !10". In the limit
J /U→0, where one can calculate effective masses perturba-
tively, our data converge to the analytical result #dashed
lines$. To the first order, the perturbative expansions are
given by #we set the Planck’s constant equal to unity$:
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FIG. 1. #Color online$ Phase diagram of the first MI-SF lobe.
Solid circles are numerical data, with error bars shown but barely
visible. The inset is a blowup of the region close to the tip. Dashed
lines represent the critical region as calculated from finite size
scaling.
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FIG. 2. #Color online$ Finite size scaling of the energy gap at
the tip of the lobe. Lines represent linear fits used to extract the
critical point. The critical point can be directly read from the inter-
section of the curves: #J /U$c=0.05974#3$.
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FIG. 3. #Color online$ Effective mass for particle #circles$ and
hole #squares$ excitations as a function of J /U. The exact results at
J /U=0 are m+=0.25 /J and m−=0.5 /J. By dashed lines we show
the lowest order in J /U correction to the effective masses. Close to
the critical point the two curves overlap, directly demonstrating the
emergence of the particle-hole symmetry. At J /U=0.059, the sound
velocity is c /J=4.8&0.2.
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Honeycomb Hubbard Model

H~{t
X

i,jh i,a
(c{iacjazc{jacia)zU

X

i

ni:ni;

where c{ia and cia respectively denote the creation and annihilation
operators for spin-up (a 5 ") and spin-down (a 5 #) fermions on

lattice site i, nia 5 c{iacia, t denotes the nearest-neighbour hopping
amplitude and U $ 0 denotes the strength of the on-site repulsion.
The first summation runs over all nearest-neighbour pairs, as
denoted by Æi, jæ (and both spins). Our notation for points and vectors
in real and momentum space is shown in the inset of Fig. 1. At U 5 0,
the tight-binding Hamiltonian has a linear dispersion near the Dirac
points (K and K9; see inset of Fig. 1), where the conduction and
valence bands touch at half-filling, corresponding to a densityP

aÆniaæ 5 1. At half-filling, the finite-U region can be studied using
projective QMC to obtain ground-state expectation values of any
physical observable (see Methods for details). The phases described
in the following correspond to extrapolations to the TDL. For that
purpose, we study lattices of N 5 2L2 sites with periodic boundary
conditions, and linear sizes up to L 5 18.

To monitor the electronic properties of the system on increasing
U, we extracted the single-particle excitation gap, Dsp(k), from the
imaginary-time displaced Green’s function (see Supplementary
Information for details). This is the minimum energy necessary to
extract one fermion from the system, and corresponds to the gap that
can be observed in photoemission experiments. As shown in Fig. 1,
Dsp(K) 5 0 for values of U/t below about 3.5, as expected for a semi-
metal. For larger values of U/t, the system enters an insulating phase
as a result of interactions. The values of the gap are obtained by
extrapolation of the QMC data to the TDL as shown in Fig. 2a.

From previous analysis of the model, long-range antiferromag-
netic correlations are expected when the Mott insulator appears.
We therefore measured the antiferromagnetic spin structure factor,
SAF (Supplementary Information), which indicates long-range anti-
ferromagnetic order if m2

s 5 limNR‘(SAF/N) . 0. Figure 2b shows
the QMC results together with a finite-size extrapolation. The results
of this extrapolation are also presented in the phase diagram in Fig. 1.
Antiferromagnetic order appears for U/t . 4.3, a value that is con-
sistent with previous estimates for the onset of long-range antiferro-
magnetic order26,27. This leaves an extended window, 3.5 , U/t , 4.3,
within which the system is neither a semimetal nor an antiferromag-
netic Mott insulator.

Further details on the nature of this intermediate region are
obtained by examining the spin excitation gap, which is extracted from
the long-time behaviour of the imaginary-time displaced spin–spin
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Figure 1 | Phase diagram for the Hubbard model on the honeycomb lattice
at half-filling. The semimetal (SM) and the antiferromagnetic Mott
insulator (AFMI) are separated by a gapped spin-liquid (SL) phase in an
intermediate-coupling regime. Dsp(K) denotes the single-particle gap and Ds

denotes the spin gap; ms denotes the staggered magnetization, whose
saturation value is 1/2. Error bars, s.e.m. Inset, the honeycomb lattice with
primitive vectors a1 and a2, and the reciprocal lattice with primitive vectors
b1 and b2. Open and filled sites respectively indicate two different sublattices.
The Dirac points K and K9 and the M and C points are marked.

sp
(K

)/t
Δ

s/
t

Δ s/
t

Δ

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1/L

0

0.04

0.08

0.12

0.16

U/t = 3.4
 U/t = 4.0
 U/t = 4.3

1 2 3 4 5 6 7 8
 U/t

0

0.04

0.08

0.12

 L = 6 

9 

12

15

 TDL

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

0.06

0.12

0.18

0.24

0.30

U/t = 4.5
U/t = 4.3
U/t = 4.0

 U/t = 3.8
 U/t = 3.6
 U/t = 3.5

−0.004 0 0.004 0.008 0.012

U/t = 4.0

U/t = 4.0

U/t = 4.3

U/t = 4.5

SAF/N

P
(S

A
F/

N
) (

a.
u.

)

b

c

S
A

F/
N

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

 

0

0.2

0.4

0.6

0.8

1.0

 U/t = 4.2
 U/t = 4.0
 U/t = 3.8
 U/t = 3.6
 U/t = 3.5

0 2 4 6 8 10
0.001

0.01

0.1

1

G
(K

, τ
)

L = 3 

6 
9

12
15

a

Figure 2 | Finite-size extrapolations of the excitation gaps and the
antiferromagnetic structure factor. a, The single-particle gap at the Dirac
point, Dsp(K), shown here for different values of U/t, is linear in 1/L. Dsp(K) is
obtained by fitting the tail of the Green’s function, G(K, t) (inset), to the
form e{tDsp(K). b, Antiferromagnetic structure factor, SAF, for various values
of U/t, fitted using third-order polynomials in 1/L. Antiferromagnetic order
appears for U/t . 4.3, as seen in the histogram P(SAF/N) from a Monte Carlo
bootstrapping analysis (inset). a.u., arbitrary units. c, Spin gap, Ds, for
different values of U/t, fitted using second-order polynomials in 1/L. Inset,
Ds for L 5 6, 9, 12 and 15, and the extrapolated values (TDL), as functions of
U/t. Error bars, s.e.m.
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the operator Ô is then obtained by adopting the limit of t R ‘ andDt
R 0 for O(t), where Dt is the short time discretization of t. This
approximation – the so called Trotter approximation – is necessary

to introduce the auxiliary fields13 and implies a systematic error,
negligible for small Dt (see Supplementary information).

First, we study both the spin structure factor SAF~
1
N

X
r Sr ,Að

hD

{Sr ,BÞ#2i and the spin-spin correlations Cs(R) 5 ÆSr,A?Sr1R,Aæ at the
maximum distance jRj5 Lmax of each cluster for U/t 5 4, where the
strongest evidence of a spin liquid behavior was found in Ref. 2. Here
Sr,A (Sr,B) is the spin operator at unit cell r on A (B) sublattice. As
shown in Fig. 2b, our results show consistently a finite value of the
antiferromagnetic order parameter m2

s ~SAF=N~C Lmaxð Þ for L R
‘, in sharp contrast to the existence of a spin liquid, i.e., spin dis-
ordered, ground state reported in Ref. 2.

By doing similar calculations for several U/t values (see Fig. 2 and
Supplementary information), we find in Fig. 3 that ms approximately
scales linearly with respect to U/t, i.e., ms / jU2Ucjb, with a critical
exponent b^0:8, which is similar to the critical behavior (b 5 1)
predicted by the HF theory12. Although corrections to this almost
linear critical behavior are obviously expected, they do not change
much the critical value Uc at which the antiferromagnetic order
melts, as clearly shown in Fig. 3. Our best estimate of the critical
value is Uc/t 5 3.8696 0.013, which is much smaller than the one (<
4.3) reported in Ref. 2. Note, however, that the critical exponent b
may be different from the present estimate if the critical region is very
close to Uc. In such case the accurate determination of b obviously
requires much larger clusters which are not feasible at present.

Let us now evaluate the spin gap Ds. In order to avoid possible
errors in extrapolating the imaginary time displaced spin-spin cor-
relation functions, here we calculate directly the total energies in the
singlet and the triplet sectors, with improved estimators, which dra-
matically reduce their statistical errors20 (also see Supplementary
information). We can see clearly in Fig. 4a that the extrapolated spin
gaps for different U/t values are always zero within statistical errors
(e.g., the statistical error as small as 0.004t for U/t 5 4).

Next, we investigate whether the system is metallic or insulating,
namely, whether there exists a zero or a finite charge gap. For this
purpose, it is enough to simply study the long distance behavior of
charge-charge correlations, r(R) 5 Ænr,Anr1R,Aæ 2 Ænr,AæÆnr1R,Aæ.

Figure 3 | The ground state phase diagram for the half-filled Hubbard
model on the honeycomb lattice. Antiferromagnetic order parameter ms

(open squares) as a function of U/t. The error, due to the finite Dt in the
evaluation of SAF, is removed by quadratic extrapolations for Dtt 5 0.1,
Dtt 5 0.2, and Dtt 5 0.4 (see Supplementary information for details). The
antiferromagnetic order parameter ms is obtained by finite-size
extrapolating the square root of SAF/N, ms~limL??

ffiffiffiffiffiffiffiffiffiffiffiffiffi
SAF=N

p
, as shown in

Fig. 2. For comparison, ms estimated by finite-size extrapolating SAF forDtt
5 0.1 without the Dt correction is also plotted (solid circles). SM and
AFMI stand for semi-metal and antiferromagnetic insulator, respectively.
Solid lines are fit of ms with the critical behavior ms 5 (Uc 2 U)b, for
selected critical exponents b. b 5 1 for the HF theory12, b 5 0.3362 for the
classical critical theory of quantum magnets19, and b 5 0.80 6 0.04 is the
best fit of our data. In any case, the critical Uc ranges from Uc/t 5 3.8 (b 5
1) to Uc/t 5 3.9 (b 5 0.3362). Our best estimate is Uc/t 5 3.869 6 0.013.

Figure 4 | Finite size scaling of spin gap and charge-charge correlation functions for the Hubbard model on the honeycomb lattice at half-filling.
(a) Spin gap Ds 5 E(S 5 1) 2 E(S 5 0) for various U/t, where E(S) is the lowest energy for a given spin S. Solid curves are fits of data by quadratic
polynomials in 1/L. The extrapolated values are also indicated at 1/L 5 0. Error bars of the extrapolated values are computed with the resampling
technique. In the semi-metallic region, the spin gap scales to zero with increasing the resolution in momentum space, namely as 1/L. In the
antiferromagnetic region, the spin gap should instead vanish as 1/L2. This explains why for U/t 5 4.3 the gap extrapolates to negative values, as we are well
inside the antiferromagnetic phase (see Fig. 3). In any case, a sizable spin gap is not found for any value of U/t. (b) Charge-charge correlation function
r(R) 5 Ænr, Anr1R,Aæ 2 Ænr,AæÆnr1R,Aæ at the maximum distance | R | 5 Lmax for several values of U/t. In the semi-metallic phase, r(R) , 1/R4 and L4r(Lmax)
should converge to a finite value for L R ‘. Instead, when a charge gap opens, the charge-charge correlations should decay exponentially and L4r(Lmax)
converges to zero in this limit. Indeed, a quadratic extrapolation to L R ‘ of this quantity, which is clearly appropriate in the semi-metallic phase, appears
to vanish in the interval between U/t 5 3.8 and U/t 5 3.9, in remarkable agreement with the critical value Uc 5 3.869 6 0.013 estimated for the
antiferromagnetic transition (see Fig. 3). Obviously, a polynomial fit is not consistent in the insulating region and this explains why the extrapolated value
to 1/L 5 0 seems slightly positive in this case. For the spin gap and the charge-charge correlation functions, the Trotter Dt error is negligible, and all data
shown here refers to Dtt 5 0.14 and 0.1, respectively.
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cf. Assaad et al, PRX 2013
     Toldin et al, PRB 2015

A hotly debated problem in recent years
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There is only one peak !
Suggesting a single transition, 

i.e. no intermediate phase 

Calculated using LCT-INT
cf. 1411.0683 & 1501.00986  
 



Why it works ?
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cf. Anderson and Yuval, 1969

Maps the Kondo model 
to a classical Coulomb gas 



Summary-II

Fidelity Susceptibility: A general purpose indicator of 
quantum phase transition
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