
k ¼ A=@. As will be detailed later on, we experimentally
observe the relaxation of the condensate quasimomentum
toward the minimum of the effective dispersion relation.
Therefore, the imprinted Peierls phase can be directly read
out from the quasimomentum distribution revealed in the
time of flight after a sudden switch off of the lattice and the
external potential.

As a central result, Fig. 2(b) shows the experimental data
together with the theoretical predictions from Eq. (3). After
increasing the forcing amplitude slowly (within up to
120 ms) to the desired value, the corresponding quasimo-
mentum distribution was recorded. From the obtained
time-of-flight images, examples of which are shown in
Fig. 2(c), we extract the Peierls phases ! [22]. We observe
an excellent agreement between experiment and theory,
thus proving the controlled generation of an arbitrary
vector gauge potential encoded into the Peierls phase ! 2
½0; 2"½. In addition, the experimental images demonstrate
the large degree of coherence maintained in the atomic
sample throughout the shaking process. As an additional
feature, Fig. 2(a) shows that the Peierls phase allows us

now to invert the sign of the effective tunneling element
without crossing jJeffj ¼ 0 via the rotation in the complex
plane.
In the following, we will discuss the details of the

relaxation of the system toward nonzero quasimomenta
superfluid states, allowing for the described direct mea-
surement of the Peierls phase. Note that for an homoge-
neous and noninteracting system, the initial Bloch wave at
ki ¼ 0 remains an eigenstate of the effective Hamiltonian.
Thus, no transfer to states with k ! 0 is expected after the
shaking is turned on. However, since we are working with
interacting bosons and an external harmonic confinement,
more effects come into play.
When the gauge potential is ramped up from 0 to Af, the

condensate acquires a nonzero group velocity, reflecting
the presence of an artificial electric force FE ¼ # _A. This
velocity induces a displacement of the condensate’s center-
of-mass position xc in the harmonic potential of frequency
f [22]. The resulting restoring force induces oscillations
both in position and momentum space [see Fig. 3(a)]. In
Fig. 3(b), we report a time-resolved measurement of the
condensate quasimomentum after a quench to a final
Peierls phase of #"=4. The oscillations around the final
quasimomentum result from an excitation of the dipole
mode: The measured frequency of 3:6$ 0:4 Hz perfectly
matches the expected dressed condensate frequencyffiffiffiffiffiffiffiffiffiffiffiffiffi
m=m%p

f for particles having an effective mass m% in the
lattice of 10$ 1Erec depth with a tunneling amplitude of
0:3Jbare (ftheo ¼ 3:5$ 0:5 Hz). The coupling to nonzero
quasimomenta results thus from the underlying harmonic
trapping potential.
In addition, this center-of-mass dynamics is subjected to

several damping mechanisms induced by the trap anhar-
monicity or the lattice discreteness, which leads to a cou-
pling to other collective modes and therefore to the
relaxation of the BEC toward the new equilibrium state.
Therefore, the duration of the ramp from 0 to Af has to be
compared with the time scale of those relaxation mecha-
nisms. In Fig. 3 we compare time-resolved measurements
of the quasimomentum distribution for a slow ramp
[Fig. 3(d)] of A to a final Peierls phase ! ¼ 3"=2, with a
sudden quench [Fig. 3(f)]. As the gauge field is slowly
increased, the BEC follows the shift of the dispersion
relation minimum, as depicted in Fig. 3(c). For the quench,
on the contrary, for which the shift of the dispersion
relation occurs within 1 ms, the system cannot follow
and thus relaxes into the nearest minimum of the effective
band structure [see Fig. 3(e)]. For the chosen value, this
minimum lies on the left with respect to the original k ¼ 0
peaks and we thus find the BEC at k ¼ #"=2d. This
demonstrates clearly that in the presence of these relaxa-
tion mechanisms, the forcing does not induce a net particle
current in the lattice, unlike for ratchets, but allows the
engineering of ground-state superfluids at arbitrary non-
zero quasimomenta.

(a)

(b)

(c)

FIG. 2 (color). Creation of complex tunneling matrix ele-
ments. (a) Absolute value of the tunneling parameter obtained
from Eq. (3) for our experimental parameters (T1 þ T2 ¼ 1 ms
and T1=T2 ¼ 2:1). (b) The measured Peierls phases in a 1D
driven optical lattice for different values of the forcing amplitude
K are depicted as circles. The dashed red curve corresponds to
the theoretically expected values [Eq. (3)]. (c) Quasimomentum
distribution of the BEC after 27 ms time of flight for different
values of K. The Peierls phase as a function of K is deduced
from the observed shifts of the interference patterns.
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