Density functional theory for static and dynamic properties of cold atomic gases

Lei Wang, ETH Zurich

Zürich Ping Nang Ma, Ilia Zintchenko, Matthias Troyer

Sebastiano Pilati

Exact Diagonalization $H|\Psi\rangle = E|\Psi\rangle$

- Gives exact results for static and dynamic properties
- But limited to small systems
 - 25 site Fermi-Hubbard model with 12 atoms on the Earth Simulator in 2006

DMRG

- Extremely powerful in 1D
 - Accurate on hundreds of sites
- Higher dimension generalization is possible but very expensive

Quantum Monte Carlo

- Can solve static properties of
 - 1,000,000 bosons in any dimensions,

Trotzky et al, Nature Physics, 2010

• 100 fermions in 2D and 3D at $T>0.05E_F$

Algorithms and Libraries for Physics Simulations http://alps.comp-phys.org

But limited to single-band Hubbard model

Beyond the Hubbard model

Continuum systems

Multi-band systems

Density functional theory

Hohenberg and Kohn 1964

 $\Psi(\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_N)$ $\mathbb{R}^{3N} \mapsto \mathbb{C}$

 $\rho(\mathbf{r})$ $\mathbb{R}^{3} \mapsto \mathbb{R}$

- Hohenberg-Kohn theorem: All properties of the system are completely determined by the ground state density
- Exact ground state density and energy can be obtained by minimizing the density functional

$$E[\rho] = F[\rho] + \int d\mathbf{r} V_{\text{ext}}(\mathbf{r})\rho(\mathbf{r})$$

• F is a universal functional independent of the external potential

Kohn-Sham approach Kohn and Sham 1965 $F[\rho] = K[\rho] + E_{\rm H}[\rho] + E_{\rm XC}[\rho]$ exchange-correlation energy kinetic mean field δE energy $\frac{\delta E}{\delta \rho} = 0$ $\frac{\delta K \delta K}{\delta \alpha} + \frac{\delta E_{\rm H} \rho}{\delta \rho} + \frac{\delta E_{\rm XC} \rho}{V \chi_{\rm C} \rho} + \frac{\delta E_{\rm XC} \rho}{V \chi_{\rm ext}} = 0$ $\rho = 2 \sum_{j=1}^{N/2} |\psi_j|^2$ $\left(-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{ext}} + V_{\text{H}}[\rho] + V_{\text{XC}}[\rho]\right)\psi_j = \varepsilon_j \psi_j$

Self-consistently solve single-particle Schrödinger equation to solve the many-body problem

Local density approximation

Use Exc of a uniform system with same local density Coulomb gas: Ceperley and Alder 1980, Cold atoms: Pilati et al 2010

Repulsive fermions show ferromagnetism for high density and large interactions

We extract E_{XC} from ground state energy $e_{xc}(k_F a, P) = \frac{3}{5}E_F(1 + ...)$

20 most cited papers in APS journals

http://mml.materials.ox.ac.uk/Main/Top10

С	Publication	# cites	Title	Author(s)
	PHYSICAL REVIEW B, 37 (2):		Development of the Colle-Salvetti Correlation-Energy Formula into	
1	785-789 (JAN 15 1988)	30198	a Functional of the Electron-Density	Lee, CT; Yang, WT; Parr, RG
	PHYSICAL REVIEW A, 38 (6):		Density-Functional Exchange-Energy Approximation with Correct	
2	3098-3100 <i>(SEP 15 1988)</i>	18610	Asymptotic-Behavior	Becke, AD
	PHYSICAL REVIEW, 140 (4A):		Self-Consistent Equations Including Exchange and Correlation	
3	1133-1138 (1965)	17196	Effects	Kohn, W; Sham, LJ
	PHYSICAL REVIEW			
4	LETTERS, 77 (18): 3865-3868	15663	Generalized Gradient Approximation Made Simple	Perdew, JP; Burke, K; Ernzerhof, M
	PHYSICAL REVIEW B, 13			
5	(12): 5188-5192 (1976)	9063	Special Points for Brillouin-Zone Integrations	Monkhorst HJ; Pack JD
	PHYSICAL REVIEW B, 54		Efficient Iterative Schemes for Ab Initio Total-Energy Calculations	
6	(16): 11169-11186 (OCT 15 1996)	8652	Using a Plane-Wave Basis Set	Kresse, G; Furthmuller, J
	PHYSICAL REVIEW B, 45		Accurate and Simple Analytic Representation of the Electron-Gas	
7	(23): 13244-13249 (JUN 15	8421	Correlation-Energy	Perdew, JP; Wang, Y
	PHYSICAL REVIEW B, 23		Self-Interaction Correction to Density-Functional Approximations	
8	(10): 5048-5079 (1981)	8307	for Many-Electron Systems	Perdew, JP; Zunger, A
	PHYSICAL REVIEW, 46 (7):			
9	0618-0622 (OCT 1934)	8272	Note on an Approximation Treatment for Many-Electron Systems	Moller, C; Plesset, MS
	PHYSICAL REVIEW B. 33		Density-Functional Approximation for the Correlation-Energy of	
10	(12): 8822-8824 Part 2 (JUN 15	8013	the Inhomogeneous Electron-Gas	Perdew, JP
	PHYSICAL REVIEW B. 46		Atoms, Molecules, Solids, and Surfaces-Applications of the	Perdew, JP: Chevary, JA: Vosko, SH:
11	(11): 6671-6687 (SEP 15 1992)	7819	Generalized Gradient Approximation for Exchange and Correlation	Jackson, KA: Pederson, MR: Singh, DJ:
	PHYSICAL REVIEW B. 41		Soft Self-Consistent Pseudopotentials in a Generalized Eigenvalue	
12	(11): 7892-7895 (APR 15 1990)	7768	Formalism	Vanderbilt, D
	PHYSICAL REVIEW B. 136			
13	(3B): B864-871 (1964)	7594	Inhomogeneous Electron Gas	Hohenberg, P: Kohn, W
	PHYSICAL REVIEW			
14	LETTERS, 45 (7): 566-569	6645	Ground-State of the Electron-Gas by a Stochastic Method	Ceperley, DM; Alder, BJ
	PHYSICAL REVIEW			
15	LETTERS, 56 (9): 930-933	6517	Atomic Force Microscope	Binnig, G; Ouate, CF; Gerber, C
	PHYSICAL REVIEW		Inhibited Spontaneous Emission in Solid-State Physics and	
16	LETTERS, 58 (20): 2059-2062	6457	Electronics	Yablonovitch. E
-	PHYSICAL REVIEW B. 43 (3):			
17	1993-2006 (JAN 15 1991)	5887	Efficient Pseudopotentials for Plane-Wave Calculations	Troullier, N: Martins, JL
	PHYSICAL REVIEW B, 59 (3):		From Ultrasoft Pseudopotentials to the Projector Augmented-Wave	
18	1758-1775 (JAN 15 1999)	5868	Method	Kresse, G; Joubert, D
	PHYSICAL REVIEW. 124 (6):			
19	1866-1878 (1961)	5816	Effects of Configuration Interaction on Intensities and Phase Shifts	Fano, U
-	PHYSICAL REVIEW. 108 (5):			
20	1175-1204 (1957)	5760	Theory of Superconductivity	Bardeen, J; Cooper, LN; Schrieffer, JR

Magnetism in harmonic trap and shallow optical lattice

Optical

Ferromagnetism in the lab?

- 2009: Indirect evidences for itinerant ferromagnetism Jo et al, Science 2009
- 2012: Pair formation in repulsive Fermi gas Sanner et al, PRL, Lee et al, PRA

Our conclusion is that an ultracold gas with strong short range repulsive interactions near a Feshbach resonance remains in the paramagnetic phase. The fast formation of molecules and the accompanying heating makes it impossible to study such a gas in equilibrium, confirming predictions of a rapid conversion of the atomic gas to pairs

Prepare clouds separately

• Start with **mixtures**: Redistribution time >> Local loss time

• Start with separated clouds

Sommer et al., Nature 2011

Time-dependent DFT

Runge and Gross, 1984

• Time-dependent density obtained from

$$i\frac{\partial}{\partial t}\psi_j(\mathbf{r},t) = \left[-\frac{\hbar^2\nabla^2}{2m} + V_{\text{ext}}(\mathbf{r},t) + V_{\text{H}}(\mathbf{r},t) + V_{\text{xc}}[\rho(\mathbf{r}',t')](\mathbf{r},t)\right]\psi_j(\mathbf{r},t)$$

• We use the adiabatic local-density approximation

Simulation of collision

Ferromagnetism in shallow optical lattices

Ma, Pilati, Troyer and Dai, Nature Physics, 2012

$$V_{\rm OL}(\mathbf{r}) = V_0 \left[\sin^2\left(\frac{\pi}{d}x\right) + \sin^2\left(\frac{\pi}{d}y\right) + \sin^2\left(\frac{\pi}{d}z\right) \right]$$

Green and Blue: partially and fully polarized in free-space Black and Yellow: partially and fully polarized with optical lattice

Half-filled system

Ma, Pilati, Troyer and Dai, Nature Physics, 2012

Validity of single-band Hubbard model

Robert Jördens, PhD thesis, 2010

3-body loss rate

 $\Gamma = a^3 \sum_{\sigma} \int_{\Omega} d\mathbf{r} \int_{|\mathbf{r}' - \mathbf{r}| < a} d\mathbf{r}' \varepsilon_F(\mathbf{r}) n_{\bar{\sigma}}(\mathbf{r}) g_{\sigma\sigma}(\mathbf{r}, \mathbf{r}')$

Still more favorable than increasing the scattering length in free space

Unitary Fermi gas

Finite-temperature DFT for unitary Fermi gas

Condensation

Normal

Bose

liquid

Normal Fermi liquid

Unitarity

Superf

Finite-Temperature DFT Applications

Finite-Temperature DFT
Formalism
$$Mermin 1965$$
Kohn and Sham 1965
$$\Omega^{T}[\rho] = K^{T}[\rho] + \overline{F_{\text{HXC}}^{T}[\rho]} + \int d\mathbf{r}(V_{\text{ext}}(\mathbf{r}) - \mu)\rho(\mathbf{r})$$

$$\left(-\frac{\hbar^{2}\nabla^{2}}{2m} + V_{\text{ext}} + \overline{V_{\text{HXC}}^{T}[\rho]}\right)\psi_{j} = \varepsilon_{j}\psi_{j} \quad \rho = 2\sum_{j} \frac{|\psi_{j}|^{2}}{e^{(\varepsilon_{j} - \mu)/k_{B}T} + 1}$$
Approx. 1
$$\overline{V_{\text{HXC}}^{T}} = \frac{\delta F_{\text{HXC}}^{T}[\rho]}{\delta\rho} \approx \mu^{T}(\rho) - \mu_{0}^{T}(\rho)$$

Approx. 2 $V_{\text{HXC}}^T \approx V_{\text{HXC}}^{T=0}$

Feynman diagrams vs Feynman emulator

Bold Diagrammatic Monte Carlo

MIT Experiment

Van Houcke *et al*, Nature Physics, 2012

Ku et al, Science, 2012

Unprecedented agreement between experiment and theory for strong interacting Fermions!

V_{HXC} for unitary Fermi gas

Fit Bold Diagrammatic Monte Carlo EOS and get VHXC

Temperature dependence of V_{HXC}

Benchmark: 4 atoms in a trap

 $N = \frac{2e^{-3\omega/2k_BT}}{(1 - e^{-\omega/k_BT})^3} (z + 2b_2^{\omega} z^2 + 3b_3^{\omega} z^3 + \dots) \quad z = e^{\mu/k_BT}$

KS vs TFA

Advantage of KS is more pronounced for constrained systems

Brantut et al 2012

cf vanishing bulk viscosity of UFG Castin 2004, Son 2007

Summary & Outlook

• DFT is a useful tool for statics and dynamics of cold atom systems

• Moreover...

Optical lattice loading, Free expansion, Lattice modulation, Bloch oscillation,

- Bosons, superfluidity, open systems ...
- Well controllable cold atom experiments can be used to calibrate and improve DFT itself

