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Exact Diagonalization

DMRG

H|Ψ� = E|Ψ�

• Extremely powerful in 1D

• Accurate on hundreds of sites 

• Higher dimension generalization is possible but very expensive  

• Gives exact results for static and dynamic 
properties

• But limited to small systems

• 25 site Fermi-Hubbard model with 12 atoms 
on the Earth Simulator in 2006

534 A. Weiße and H. Fehske
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Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑

j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n〉, the state Pk|n〉 is an eigenstate of T ,

TPk|n〉 =
1
L

L−1∑

j=0

e2πijk/LT j+1|n〉 = e−2πik/LPk|n〉 , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that T L = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L − 1).

The normalization of the state Pk|n〉 requires some care. We find

P †
k =

1
L

L−1∑

j=0

e−2πijk/LT−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk

P 2
k =

1
L2

L−1∑

i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑

j′=0

e2πij′k/LT j′ = Pk , (18.16)

as we expect for a projector. Hence, 〈n|P †
kPk|n〉 = 〈n|P 2

k |n〉 = 〈n|Pk|n〉. For
most |n〉 the states T j|n〉 with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore 〈n|Pk|n〉 = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n〉 = eiφn |n〉 with a phase φn (usually 0 or



Quantum Monte Carlo
• Can solve static properties of

• 1,000,000 bosons in any dimensions, 

• 100 fermions in 2D and 3D at T>0.05EF

Trotzky et al, Nature Physics, 2010

But limited to single-band Hubbard model

Algorithms and Libraries for Physics Simulations
http://alps.comp-phys.org

http://alps.comp-phys.org
http://alps.comp-phys.org


Beyond the Hubbard model

Stoner, 1939, Jo et al, Science 2009

Continuum systems

Tarruell et al, Nature 2012
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Creating, moving and merging Dirac points with a
Fermi gas in a tunable honeycomb lattice
Leticia Tarruell1, Daniel Greif1, Thomas Uehlinger1, Gregor Jotzu1 & Tilman Esslinger1

Dirac points are central to many phenomena in condensed-matter
physics, from massless electrons in graphene to the emergence of
conducting edge states in topological insulators1,2. At a Dirac
point, two energy bands intersect linearly and the electrons behave
as relativistic Dirac fermions. In solids, the rigid structure of the
material determines the mass and velocity of the electrons, as well
as their interactions. A different, highly flexible means of studying
condensed-matter phenomena is to create model systems using
ultracold atoms trapped in the periodic potential of interfering
laser beams3,4. Here we report the creation of Dirac points with
adjustable properties in a tunable honeycomb optical lattice. Using
momentum-resolved interband transitions, we observe aminimum
bandgap inside the Brillouin zone at the positions of the two Dirac
points. We exploit the unique tunability of our lattice potential to
adjust the effective mass of the Dirac fermions by breaking inver-
sion symmetry.Moreover, changing the lattice anisotropy allows us
to change the positions of theDirac points inside theBrillouin zone.
When the anisotropy exceeds a critical limit, the two Dirac points
merge and annihilate each other—a situation that has recently
attracted considerable theoretical interest5–9 but that is extremely
challenging to observe in solids10. We map out this topological
transition in lattice parameter space and find excellent agreement
with ab initio calculations. Our results not only pave the way to
model materials in which the topology of the band structure is
crucial, but also provide an avenue to exploring many-body phases
resulting from the interplay of complex lattice geometries with
interactions11–13.
Ultracold gases in optical lattices have become a versatile tool with

which to simulate a wide range of condensed-matter phenomena3,4.
For example, the control of interactions has led to the observation of
Mott insulating phases14–16. In fermionic systems, this provides new
access to the physics of strongly correlated materials. However, the
topology of the band structure is equally important for the properties of
a solid. A prime example is the honeycomb lattice of graphene, where
the presence of topological defects in momentum space—the Dirac
points—leads to remarkable transport properties, even in the absence
of interactions1. In quantum gases, a honeycomb lattice has recently
been realized and investigated using a Bose–Einstein condensate17,18,
but no signatures of Dirac points were observed. Here we study an
ultracold Fermi gas of 40K atoms in a two-dimensional, tunable optical
lattice, which can be continuously adjusted to create square, triangular,
dimer and honeycomb structures. In the honeycomb lattice, we
identify the presence ofDirac points in the band structure by observing
a minimum bandgap inside the Brillouin zone using interband transi-
tions. Our method is closely related to a technique recently used with
bosonic atoms to characterize the linear crossing of two high-energy
bands in a one-dimensional, bichromatic lattice19, but also provides
momentum resolution.
To create and manipulate Dirac points, we have developed a two-

dimensional optical lattice of adjustable geometry. It is formed by three
retro-reflected laser beams of wavelength l5 1,064 nm, arranged as
depicted in Fig. 1a. The interference of two perpendicular beams, X

and Y, gives rise to a chequerboard lattice of spacing l=
ffiffiffi
2

p
. A third

beam, !X, collinear with X but detuned by a frequency d, creates an
additional standing wave with a spacing of l/2. This yields a potential
of the form

1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland.
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Figure 1 | Optical lattice with adjustable geometry. a, Three retro-reflected
laser beams of wavelength l5 1,064 nm create the two-dimensional lattice
potential of equation (1). Beams X andY interfere and produce a chequerboard
pattern, and beam !X creates an independent standing wave. Their relative
position is controlled by the detuning d. b, Top: different lattice potentials can
be realized depending on the intensities of the lattice beams. White regions
correspond to lower potential energies and blue regions to higher potential
energies. Bottom: diagram showing the accessible lattice geometries as a
function of the lattice depthsV!X andVX. The transition between triangular (T)
and dimer (D) lattices is indicated by a dotted line. When crossing the dashed
line into the honeycomb (Hc) regime, Dirac points appear. The limit V!X?VX,
V!X?VY corresponds toweakly coupled, one-dimensional chains (1D c). c, The
real-space potential of the honeycomb lattice has a two-site unit cell (sitesA and
B) and the primitive lattice vectors are perpendicular. d, Left: sketch of the first
and second Brillouin zones (BZs) of the honeycomb lattice, indicating the
positions of the Dirac points. Right: three-dimensional view of the energy
spectrum showing the linear intersection of the bands at the two Dirac points.
The colour scale illustrates lines of constant energy. We denote the full
bandwidth,W; the minimum energy gap at the edges of the Brillouin zone, EG;
and the Bloch wavevector, qB5 2p/l.
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Multi-band systems



Non-equilibrium dynamics
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Collision of cloudsExpansion in 2D lattice



• Hohenberg-Kohn theorem: All properties of the system are 
completely determined by the ground state density 

• Exact ground state density and energy can be obtained by 
minimizing the density functional 

Density functional theory 
Hohenberg and Kohn 1964

E[ρ] = F [ρ] +

�
drVext(r)ρ(r)

Ψ(r1, r2, ..., rN )

• F is a universal functional independent of the external potential 

R3N �→ C

ρ(r)

R3 �→ R



δK

δρ
+

δEH[ρ]

δρ
+

δEXC[ρ]

δρ
+ Vext = 0

Kohn-Sham approach

kinetic
energy

exchange-correlation
energy

mean field 
energy

Kohn and Sham 1965

(−�2∇2

2m
+ Vext + VH[ρ] + VXC[ρ])ψj = εjψj

δK

δρ
+ VH[ρ] + VXC[ρ] + Vext = 0

F [ρ] = K[ρ] + EH[ρ] + EXC[ρ]

δE

δρ
= 0

Self-consistently solve single-particle Schrödinger equation
to solve the many-body problem 

ρ = 2

N/2�

j=1

|ψj |2

http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation
http://en.wikipedia.org/wiki/Schr%C3%B6dinger_equation


Local density approximation

Use EXC of a uniform system with same local density 

Coulomb gas: Ceperley and Alder 1980,  Cold atoms: Pilati et al 2010 

Repulsive fermions show 
ferromagnetism for high 
density and large interactions
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Ultracold gas

Optical lattice

1/2 λ

Magnetism in harmonic trap 
and shallow optical lattice



Ferromagnetism in a trap 

Zintchenko 2011
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EKS[ρ] = K[ρ] + EH[ρ] +

�
dr [exc(ρ(r)) + Vext(r)] ρ(r)ETFA[ρ] =

�
dr [eunif(ρ(r)) + Vext(r)] ρ(r)



Ferromagnetism in the lab?

• 2009: Indirect evidences for itinerant ferromagnetism Jo et al, Science 2009

M
ol

ec
ul

ar
 F

ra
ct

io
n 

[%
] 

Interaction Parameter  

(c) 

At
om

 L
os

s 
R

at
e 

[/m
s]

 

(b) 

R
em

ai
ng

 A
to

m
ic

 F
ra

ct
io

n 

(a) 
Magnetic Field [G] 

Unstable

k0Fa

• 2012: Pair formation in repulsive Fermi gas Sanner et al, PRL, Lee et al, PRA

has not been discussed in the literature. Our experiments do
not reveal any major increase in spin fluctuations which
seems to exclude a ferromagnetic state. In the simplest
picture, we could regard the atomic quasiparticles as free
atoms, and then apply the Stoner model to them.
Ferromagnetic domain formation is analogous to phase
separation between the two spin components [3]. Since
dimers interact equally with the two spin components, one
might expect that even a noticeable dimer fraction should
not suppress the tendency of the atomic gas to form do-
mains. Therefore, in a simple model, one may neglect
dimer-atom interactions.

If the Stoner model applies to this quasiparticle gas, the
next question is whether the temperature is low enough
for the ferromagnetic phase transition. Available theoreti-
cal treatments do not predict an exact maximum transition
temperature to the ferromagnetic state and obtain an
unphysical divergence for large scattering lengths. Since
the only energy scale is the Fermi temperature, one would
expect a transition temperature which is a fraction of
the Fermi temperature [37], higher or around the
temperature scale probed in our experiments. However,
even above the transition temperature, the susceptibility
is enhanced. A simple Weiss mean field or Stoner
model leads to the generic form of the susceptibility
!ðTÞ ¼ !0ðTÞ=ð1$ w!0ðTÞÞ, where !0ðTÞ is the Pauli
susceptibility of the non-interacting gas and w the interac-
tion parameter. This formula predicts a twofold increase
in the susceptibility even 50% above the transition tem-
perature, which is well within the sensitivity of our
measurements.

Therefore, our experiment can rule out ferromagnetism
for temperatures even slightly lower than the experimental
temperatures. Temperatures are very difficult to measure
in a transient way for a dynamic system which may not be
in full equilibrium. For example, cloud thermometry
requires full equilibration and lifetimes much longer than
the longest trap period. We attempted to measure the
temperature after the hold time near the Feshbach reso-
nance by quickly switching the magnetic field to weak
interactions at 527 G and then performing noise thermom-
etry using speckle imaging [4]. We measure column-
integrated fluctuations that are 0.61(8) of the Poisson value
which implies an effective temperature well below TF,
around 0.33(7) TF, not much higher than our initial
temperature of 0.23 TF. Although the cloud is not in full
equilibrium, an effective local temperature can still be
obtained from noise thermometry.

Alternatively, we can estimate the temperature increase
from the heat released by pair formation. A simple model
[38] accounting for the relevant energy contributions
predicts for kFa ¼ 1 that molecule fractions of higher
than 20% result in a final temperature above 0:4TF, an
estimate which is higher than the measurement reported
above. One may hope that closer to resonance many-body

effects lower the released energy; however, as we show
in the Supplemental Material (Fig. 1 of [38]) this is
not necessarily the case due to the repulsive interaction
energy.
Our experiment has not shown any evidence for a pos-

sible ferromagnetic phase in an atomic gas in ‘‘chemical’’
equilibrium with dimers. This implies one of the following
possibilities. (i) This gas can be described by a simple
Hamiltoninan with strong short range repulsion.
However, this Hamiltonian does not lead to ferromagne-
tism. This would be in conflict with the results of recent
quantum Monte Carlo simulations [19,20] and second
order perturbation theory [11], and in agreement with
conclusions based on Tan relations [39]. (ii) The tempera-
ture of the gas was too high to observe ferromagnetism.
This would then imply a critical temperature around or
below 0:2T=TF, lower than generally assumed. (iii) The
quasiparticles cannot be described by the simple model of
an atomic gas with short-range repulsive interactions due
to their interactions with the paired fraction.
A previous experiment [3] reported evidence for ferro-

magnetism by presenting non-monotonic behavior of atom
loss rate, kinetic energy and cloud size when approaching
the Feshbach resonance, in agreement with predictions
based on the Stoner model. Our measurements confirm
that the properties of the gas strongly change near
kFa ¼ 1. Similar to [3], we observe features in kinetic
and release energy measurements near the resonance (see
Supplemental Material [38]). However, the behavior is
more complex than that captured by simple models. The
atomic fraction decays non-exponentially (see Fig. 3), and
therefore an extracted decay timewill depend on the details
of the measurement such as time resolution. Reference [3]
found a maximum of the loss rate of 200 s$1 for a Fermi
energy of 28 kHz. Our lower bound of the decay rate of
3% 103 s$1 is 15 times faster at a five times smaller Fermi
energy. Our more detailed study rules out that Ref. [3] has
observed ferromagnetic behavior.
Our conclusion is that an ultracold gas with strong short

range repulsive interactions near a Feshbach resonance
remains in the paramagnetic phase. The fast formation of
molecules and the accompanying heating makes it impos-
sible to study such a gas in equilibrium, confirming pre-
dictions of a rapid conversion of the atomic gas to pairs
[21,40]. The Stoner criterion for ferromagnetism obtains
when the effective interaction strength times the density of
states is larger than one. This is a at least an approximately
valid criterion for multi-band lattice models [41]. We have
shown here that this criterion cannot be applied to Fermi
gases with short-range repulsive interactions (the basic
Stoner model) since the neglected competition with pairing
is crucial.
This work was supported by NSF and ONR, AFOSR

MURI, and under ARO Grant No. W911NF-07-1-0493
with funds from the DARPA Optical Lattice Emulator

PRL 108, 240404 (2012) P HY S I CA L R EV I EW LE T T E R S
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Prepare clouds separately

Sommer et al., Nature 2011

• Start with mixtures: Redistribution time >> Local loss time

• Start with separated clouds  



Time-dependent DFT

• Time-dependent density obtained from 

• We use the adiabatic local-density approximation

Runge and Gross, 1984

i
∂

∂t
ψj(r, t) =

�
−�2∇2

2m
+ Vext(r, t) + VH(r, t) + Vxc[ρ(r

�, t�)](r, t)

�
ψj(r, t)
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Ferromagnetism in shallow optical lattices
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FIG. 2. Phase diagrams at fixed optical lattice intensity V0. The red-color intensity indicates the polarization P =
(ρ↑ − ρ↓)/(ρ↑ + ρ↓). The optical lattice depths are (a) V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ERand (d) V0 = 4ER calculated
using HK-LSDA instead of KS-LSDA. The green and blue curves indicate, respectively, the transitions to partially and fully
polarized phases in homogeneous systems (V0 = 0). Ferromagnetism dominates in the region of large optical lattice intensity
V0 and scattering length a, where the non-trivial phase boundary arises due to the Kohn-Sham band theory, which cannot be
captured using HK-LSDA .

red). The crossover regions in this very shallow lattice
are similar to the boundaries of the homogeneous sys-
tem V0 = 0 [13], indicated by the green and blue lines.
In deeper optical lattices (V0 = 2ER in figure 2(b) and
V0 = 4ER in figure 2(c)) polarization sets in at much
weaker interactions, indicating that the optical lattice
strongly favours ferromagnetism.

We can see two prominent features due to the lattice.
The first is the much bigger extent of the partially or
fully polarized phases in the presence of an optical lat-
tice. This is due to the higher local density at the po-
tential minima in the optical lattice, which increases the
local density beyond the critical value for polarization.
Comparing Figs. 2(c) and (d) we see that including the
accurate kinetic energy in the KS-LSDA this effect is even
stronger than in the simpler HK-LSDA approximation.
A second striking effect that does not even show up is the
non-monotonic behavior of the phase boundary: there is
a large fully polarized region at densities up to half filling
(n ≤ 1), which rapidly shrinks at higher filling. This fea-
ture is due to band structure effects and a gap between
up-spin and down-spin subbands, and thus completely
absent in the HK-LSDA approximation (figure 2(d)).

We thus next calculate the detailed band structure of
the interacting system, shown in the left panels of fig-
ure 3, for a weak optical lattice (V0 = 2ER) without a
band gap and on the right for a moderate optical lat-
tice with a band gap (V0 = 4ER). Weak interactions
(a = 0.04d) change the band structure only slightly. In-
creasing the interaction to a = 0.08d (second row) we find
a partially polarized state in the deeper lattice: the two
spin sub-bands split and the band structure is substan-
tially changed. At even stronger interaction a = 0.16d
(third row) the gas is partially polarized also in the shal-
lower lattice, and becomes fully polarized in the deeper
lattice. Note that here the fermions are fully polarized up
to half band filling n = 1, since only the up-spin band gets
occupied. Notice also that in the fully polarized state the
first band is fully occupied and the system is insulating
due to the gap between the first and second sub-bands.
Going beyond half filling the next band has the opposite

spin, which means that we change to a partially polarized
state – explaining the sharp feature around n = 1 in the
phase diagram in figure 2(c). To recover full polariza-
tion for n > 1 one needs to increase either interaction or
lattice depth to push the energy of the lowest down-spin
band above the second up-spin band.

At half band filling n = 1 we expect antiferromag-
netism to compete with ferromagnetism. To see anti-
ferromagnetism we need to consider a unit cell consisting
not of one but of 23 lattice sites, and compare the energies
of antiferromagnetic and uniform configurations. Indeed
we find, as shown in figure 4, that antiferromagnetic or-
dering is preferred at intermediate interaction strengths
and half band filling, matching with the single band Hub-
bard model physics that becomes valid in the upper left
hand corner of the shown phase diagram.

These phase diagrams for repulsively interacting
fermionic atoms in an optical lattice are just the start
of using DFT for atomic gases and there is a countless
number of further applications. Already in this simple
system we have seen striking effects, like substantially
enhanced ferromagnetism and strikingly non-monotonic
behavior of the phase boundaries that is not present in a
simple Hk-LSDA approximation.

One immediate extension might be to apply diagram-
matic correction of the LSDA functional, in analogy with
Hedin’s GW method [15] for the Coulomb case, which is
important there to get accurate band gaps [16]. Since,
due to the local nature of the interaction, first order di-
agrams are already included in the LSDA functional, we
can focus on higher order corrections.

The next directions to explore are the limitations of
LSDA in the strongly correlated regime. While self in-
teraction corrections (SIC) [17] are not needed (due to
the local nature of the interaction), it will be interesting
to use the LDA+U method [18] which combines LSDA
with a Hartree Fock approximation, or LDA+DMFT [19]
which combines an LSDA functional with a dynamical
mean field theory (DMFT) [20] treatment of the corre-
lated orbitals. Both methods can easily be adapted to
atomic gases using our LSDA functional. On the one

Green and Blue: partially and fully polarized in free-space
Black and Yellow: partially and fully polarized with optical lattice
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 Can a lattice help ?



3-body loss rate

Still more favorable 
than increasing the 
scattering length in 
free space 
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Contour plot of Gamma
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Finite-Temperature DFT
 Applications



Finite-Temperature DFT
 Formalism

Mermin 1965

Kohn and Sham 1965

ΩT [ρ] = KT [ρ] + FT
HXC

[ρ] +

�
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Feynman diagrams vs Feynman emulator

 Bold Diagrammatic Monte Carlo MIT Experiment 
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Unprecedented agreement between experiment  
and theory for strong interacting Fermions!



VHXC for unitary Fermi gas

λ =

�
2π�2
mkBT

µT (ρ) µT
0 (ρ)−V T

HXC
=

Fit Bold Diagrammatic Monte Carlo EOS and get VHXC



Temperature dependence of VHXC



Benchmark: 4 atoms in a trap

N =
2e−3ω/2kBT

(1− e−ω/kBT )3
(z + 2bω2 z

2 + 3bω3 z
3 + ...) z = eµ/kBT



KS vs TFA

∆ =
1

N

�
dr|ρKS(r)− ρTFA(r)|

 Brantut et al 2012

Advantage of KS is more pronounced for constrained systems



Finite-Temperature TDDFT

�r2(t)� =
�

drρ(r, t)r2

cf vanishing bulk viscosity of UFG  
Castin 2004, Son 2007 

Breathing mode
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Summary & Outlook

• Moreover... 

• Bosons, superfluidity, open systems ...

• Well controllable cold atom experiments can be used to 
calibrate and improve DFT itself 

• DFT is a useful tool for statics and dynamics of 
cold atom systems 

Optical lattice loading, 
Free expansion, 

Lattice modulation,
Bloch oscillation, 

...



Thank you!


