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Abstract

The quest for new exotic materials lies in our theoretical understanding of strong
correlations, which could only be sought via quantum emulators at large scale.
Optical lattices, being clean and easily tunable, become natural candidates. This
thesis is regarding numerical simulations of bosons and fermions in 3D optical
lattices, which bridges the theory to the relevant experiments today as well as
in the near future. The first part is devoted to the various thermometry schemes
which are made possible due to the state-of-art probing techniques in experiments.
These schemes are quantitatively tested in this thesis to give realiable estimates
of the thermodynamic temperature even in the presence of different experimental
imperfections, therefore proving itself to be a feasible standard thermometer for
bosonic optical lattices. The second part is about the robust implementation of
the QMC directed worm algorithm capable of scaling up to some 10 million sites
with any lattice geometry, of which some manage to converge in merely a couple
of hours. The current version is in fact one of the fastest, if not the fastest, in
the world till date, specially designed for the needs of future experiments which
will involve bigger bosonic clouds beyond parabolic trapping. Large-scale simu-
lations involving large datasets are flexibly supported with chain automations in
this new version. The third part illustrates the use of density functional theory for
fermionic shallow optical lattices. We find that Stoner ferromagnetism, which was
recently discovered to exist in fermionic gases, gets stablized by the optical lattice
due to band structure effects. At half-filling in the Hubbard model limit, the an-
tiferromagnetic phase is recovered by density functional theory with the presence
of a spin-density-wave gap that could be an indirect probe for antiferromagnetism
in future experiments. As a whole, the numerical simulations in this thesis are
performed as numerically exact as possible, at least in some limit, with minimal
assumptions, so as to ensure that our results here will remain relavant to both
theoreticans and experimentalists in the coming future.
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Zusammenfassung

Die Suche nach neuen exotischen Materialien liegt in unserem theoretischen Ver-
ständnis starker Korrelationen, die nur über Quanten-Emulatoren hoher Größenord-
nung angestrebt werden konnten. Optische Gitter sind natürliche Kandidaten, da
sie geordnet und leicht kontrollierbar sind. Diese Thesis betrachtet numerische
Simulationen von Bosonen und Fermionen in 3D optischen Gittern, und schlägt
eine Brücke zwischen Theorie und sowohl heute als auch in der nahen Zukunft
relevanter Experimente. Der erste Teil ist den zahlreichen Methoden der Tem-
peraturmessung gewidmet, die durch die momentanen Techniken in Experimenten
möglich gemacht werden. Diese Methoden werden in dieser Thesis quantitativ
darauf getestet, ob sie insbesondere in Gegenwart verschiedener experimenteller
Imperfektionen verlässliche Abschätzungen der thermodynamischen Temperatur
liefern, und sich somit als Kandidaten für Standard-Thermometer bosonischer
optischer Gitter erweisen. Der zweite Teil befasst sich mit der robusten Imple-
mentierung des QMC bestimmten Wurm-Algorithmus, mit der bei jeder Gitter-
geometrie auf einige 10 Millionen Gitterplätze hochskaliert werden kann, wobei
einige bereits innerhalb weniger Stunden konvergieren. Die momentane Version
ist tatsächlich eine der schnellsten Implementierungen der Welt bis heute, wenn
nicht die schnellste, und ist speziell entworfen um den Bedürfnissen zukünftiger
Experimente, die größere, über parabolisches trapping hinausgehende bosonische
clouds beinhalten, gerecht zu werden. In dieser neuen Version werden large-scale
Simulationen mit großen Datenmengen durch Kettenautomatisierungen flexibel
unterstützt. Der dritte Teil zeigt den Nutzen von DFT für fermionische flache
optische Gitter. Wir zeigen, dass der Stoner Ferromagnetismus, der vor kurzem in
fernionischen Gasen entdeckt wurde, durch das optische Gitter aufgrund von Band-
struktureffekten stabilisiert wird. Bei half-filling im Limit des Hubbard Modells
erreicht man wieder die Antiferromagnetische Phase durch DFT mit der Anwe-
senheit einer Spin-density-wave Lücke, was ein indirekter Test für Antiferromag-
netismus in zukünftigen Experimenten sein könnte. Im Großen und Ganzen sind
die numerischen Simulationen in dieser Arbeit so numerisch exakt wie möglich
durchgeführt, zumindest in einem gewissen Limit, mit minimalen Annahmen, um
so sicherzustellen, dass unsere Ergebnisse hier sowohl für Theoretiker als auch für
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Experimentatoren in der näheren Zukunft relevant bleiben.
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Chapter 1

Introduction

1.1 Birth of a quantum era
The entire human civilization was brought to believe that nature were certain and
deterministic prior the 20th century. This belief is in fact the principle behind
Newtonian classical mechanics [1], which lays the foundation of the tallest archi-
tecture and the fastest bullet train on Earth. Further evidence for the belief came
in 1861-2 when James Clerk Maxwell unified classical electromagnetism under his
four Maxwell equations [2]. At that time, science and technology could all be ex-
plained by classical mechanics. Its extraordinary beauty had in fact blinded many
scientists up to the mid-twentieth century, including the mighty Albert Einstein
who once made the following comment.

“God does not play dice with the universe.”

— Albert Einstein, The Born-Einstein Letters 1916-55

The beginning of the 20th century marked a revolutionary period among the sci-
entific community, where a series of microscopic experiments1, one after another,
failed to comply by the law of classical mechanics. [3] Evidence provided by these
experiments slowly convinced some scientists at that time that all microscopic par-
ticles are waves. In 1926, Erwin Schrd̈ingier formulated the wave interpretation of
quantum mechanics by the proposal of his Schrödingier equation [4]

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m
∇2 + V (x, t)

)
ψ(x, t) (1.1)

1Classical mechanics became inadequate in explaining a series of microscopic experiments.
Some examples include the black-body radiation, the photoelectric effect, the Compton effect,
the discretization of atomic energy spectra, and the quantization of angular momentum. [3]
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1.2 Quantum engineering of materials

that dictates the particle wavefunction ψ(x, t) in the presence of an external po-
tential V (x, t). In the same year, Max Born proposed a probabilistic interpretation
for |ψ(x, t)|2 [5], such that the underlying microscopic particle could never be lo-
cated with certainty at any spatial position in general. Surprisingly, nature reveals
itself to be stochastic and unpredictable at the microscopic level, and all subse-
quent experiments prove quantum mechanics to be fundamentally correct. Other
remarkable scientists, who had greatly contributed to the development of quantum
mechanics, include Werner Heisenberg, Paul Dirac, and Richard Feynmann.

“ ... nobody understands quantum mechanics.”

— Richard Feynmann, The Character of Physical Law 1965

Quantum mechanics exhibits many peculiar phenomenons that are not easily un-
derstood. Microscopically, the wave nature of particles makes them identical or
indistinguishable, leading the many-body wavefunction to be either symmetric or
antisymmetric under particle permutation [6]. As a consequence, identical parti-
cles could either behave like bosons exhibiting symmetric statistics [7], or fermions
exhibiting antisymmetric statistics [8, 9]. In fact, bosons and fermions are the
only two types of particles that exist in nature. Their statistical effects give rise to
many new phases of matter, like superfluidity and antiferromagnetism [10]. After
a century, quantum mechanics has become the fundamental pillar of all modern
technology today.

1.2 Quantum engineering of materials
The modern description of solids came in 1928 when Felix Bloch invented the
electronic band theory for crystals based on lattice translational symmetries in
quantum mechanics [11]. A remarkable consequence is the classification of semi-
conductor materials characterized by a finite band gap of the order of a few eV,
distinct from either a conductor or an insultor [12]. The historical moment came
in 1947 when Bardeen, Shockley, and Brattain invented the first germanium-based
semiconductor point contact npn-transistor that marked the beginning of the ro-
bust semiconductor industry [13]. Today, we are in a nanotechnology era, whereby
modern commercial transistors size about 45 nm in size, and modern graphic cards
have over 3 billion transistors beautifully engineered as integrated circuits [14]. Ex-
citingly, researchers have been successful in creating new exotic transistors which
are based on carbon nanotubes in 1998 [15], and biomolecules like DNA, RNA,
proteins in 2013 [16]. The theoretical description of these conventional materials
is completely known from Kohn-Sham density functional theory [17], including
higher-order diagrammatic corrections [18]. Its success enables scientists to make
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Introduction

accurate predictions of new semiconductor and biological materials.

An entirely different class of strongly correlated materials exists in nature which
yields fascinatingly captivating properties beyond those merely from conventional
materials. These materials are derived from transition metals or/ and rare earth
metals, having incompletely filled d- or f- electron orbitals respectively with nar-
row energy bands [19]. Typical examples include 1) ferromagnetic materials such
as nickel Ni, cobalt Co, and iron Fe; 2) ferrimagnetic materials such as hematite
Fe2O3, and yttrium iron garnet Y3Fe2(FeO4)3; and 3) antiferromagnetic materials
such as chromium Cr, and nickel oxide NiO. [20] Of particular engineering interest
lies probably in the high temperature cuprate superconductors that exhibit zero
electrical resistivity when cooled below some particular transition temperature Tc

[19]. Since its first discovery by Bednorz and Müller in 1986 [21], subsequent dis-
coveries have revealed unconventional superconductivity up to a temperature of
133K in mercury-barium-calcium-based cuprates HgBa2Ca2Cu3O8 [22]. Uncon-
ventional superconductivity has also been recently found in iron pnictides [23]
which is another class of strongly correlated materials.

The physics of strongly correlated materials remains theoretically uncertain af-
ter many decades since their discoveries. The inadequency of the single-electron
picture makes density functional theory alone unsuitable for studying strongly cor-
related materials qualitatively. Instead, physicists turn to toy models and hope
that they could capture most of the essential physics of strongly correlated mate-
rials. Unfortuantely, the Hubbard model [24]

Ĥ = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + U
∑
i

ni↑ni↓ , (1.2)

having been believed to capture unconventional superconductivity in doped cuprates
for instance, turns out to be too challenging for the most powerful machines to be
solved numerical exactly via Quantum Monte Carlo methods due to the notori-
ous sign problem till today. As a consequence, there exists no quantitative phase
diagram for the Hubbard model to be directly compared with experiments, there-
fore seriously handicapping our understanding towards these materials, needless
to mention further about prediction and engineering. Recently, optical lattices
have been proposed to be alternative quantum emulators [25], in hoping that they
could solve such quantum models and bring greater insights to strongly correlated
materials.
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1.3 Optical lattice as a quantum emulator

1.3 Optical lattice as a quantum emulator

1.3.1 Optical lattice

Figure 1.1: Atomic gases in a 2D optical lattice. Counter-propagating laser light
form a standing wave, or an optical lattice, due to wave interference effect. The
lattice intensity is V0, the wavelength λ and thus spacing d = λ/2. This figure is
modified from its original version, courtesy of M. Yamashita.[26].

The physics of wave interference, generated by counter-propagating laser light,
dictates the presence of a standing wave. [27] The environment of standing waves is
called an optical lattice with intensity V0 and spacing d = λ

2
, which is conceptually

illustrated in figure 1.1. For instance, the potential of an isotropic 3D optical
lattice reads

V (x) =
∑

xi=x,y,z

V0 sin2(kxi) (1.3)

with wavevector k = 2π
λ

= π
d
[28]. In addition, quantum particles in an optical

lattice have to be confined by a trapping potential VT (x), otherwise they would
fly apart. In the Greiner experiment, the confinement has been realised with a
tight Gaussian laser focus, as schematically illustrated by figure 1.2. Here, the 3D
optical lattice is radially confined by the trapping envelope

V0 exp

(
−2r2

w2
0

)
(1.4)

of waist (or 1/e2-radius) w0 [28]. Particles in current experiments are trapped in
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Introduction

Figure 1.2: Schematic illustration of the Gaussian confinement of bosons.[28] Top:
A pair of counter-propagating laser beams interfere in the x-direction to form
an enveloped standing wave of intensity V0, with trapping envelope of waist w0.
Bottom: Near the centre, the optical potential is almost uniformly periodic, i.e.
V0 sin2(kx), with an additional parabolic trapping term V0

w2
0
x2.

the vicinity close to the center of the gaussian trap, therefore effectively confined
by the first order parabolic trapping term. Taking into account also all other
parabolic trapping, the trapping potential can be effectively written as

VT (x) = VTx
2 (1.5)

where VT is the strength of the parabolic trapping.

1.3.2 Single particle in an optical lattice

To better conceptualise the physics, let us hypothetically consider a single parti-
cle of mass m in an optical lattice. Within non-relativisitic regime, its quantum
mechanical nature is captured by the Schrd̈ingier equation in reciprocal space
Ĥkuk = Ekuk. [29] Due to the periodicity of the optical lattice, the Bloch Hamil-
tonian is given by

Ĥ =
~2

2m
(−i∇+ k)2 + V (x) , (1.6)

where the k-points in reciprocal space take values depending individually on dif-
ferent lattice geometries. Figure 1.3 illustrates the energy band structure Ek of an
optical lattice, where one could clearly observe the opening of a energy band gap
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1.3 Optical lattice as a quantum emulator

Figure 1.3: Single particle energy band structure Ek of a simple cubic lattice.
Energy band gap ∆ opens up with increasing lattice intensity V0, i.e. from 1.0ER
(left), to 2.2ER (centre), and finally 3.4ER (right). Here, the high-symmetry k-
points of a simple cubic lattice are namely Γ(0, 0, 0), X(π

d
, 0, 0), M(π

d
, π
d
, 0) and

R(π
d
, π
d
, π
d
). In addition, energy is expressed in units of recoil energy ER = h2

2mλ2
.

Typically, for a Rb-87 particle in an optical lattice with λ = 800nm, the recoil
energy is ER = 172nK.

∆ as the shallow lattice (small V0) becomes deep (large V0).

In the limit of larger V0 such that ∆ � kBT where T is the thermodynamical
temperature, only the ground state band becomes relevant. By taking the Fourier
transform of ground state Bloch functions u(0)

k (x), i.e.

w(x− xi) =
1√
Ω

∑
k

u
(0)
k (x)eik·(x−xi) , (1.7)

where Ω is the volume of the primitive unit cell, we obtain an orthonormal basis
of Wannier functions {w(x−xi)} that are maximally localized at every individual
lattice site. [38] Next, we define the hopping strength of a particle from site i to j
as

tij = −
∫
dxw(x− xi)

(
− ~2

2m
∇2 + V (x)

)
w(x− xj) (1.8)

and the onsite energy εi = tii. Often, only the hopping strength between nearest
neighbouring sites is relevant to the physics, and is simply denoted by t for the
case of homogeneous lattice. Two identical particles in an optical lattice interact
through short-range potential, hereby modelled by contact interaction in real space,
i.e.

U(x,x′) =
4πas~2

m
δ(x,x′) , (1.9)

where the scattering mechanism is effectively described by the s-wave scattering
length as, which can be easily tuneable in experiments via Feshbach resonance
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technique. [28, 31] Next, we define interaction strength among site i, j, k, l as

Uijkl =
4πas~2

m

∫
dxw(x− xi)w(x− xj)w(x− xl)w(x− xk) . (1.10)

Often, only the onsite interaction strength is relevant to the physics, and is simply
denoted by U for the case of homogeneous lattice.

1.3.3 Bosons in an optical lattice

Figure 1.4: Phases of boson Hubbard model for 3D lattices. [32] At lower tem-
peratures T/t, an homogeneous bosonic optical lattice exhibits superfluid (Mott
insulator) phase in the limit of small (large) interaction U/t. At higher tempera-
tures T/t, the system becomes normal fluid.

The hamiltonian for single-component bosons in an optical lattice is

Ĥ =

∫
dx ψ̂†(x)

(
− ~2

2m
∇2 + V (x)

)
ψ̂(x) +

1

2

∫
dx dx′ψ̂†(x)ψ̂†(x′)U(x,x′) ψ̂(x′)ψ̂(x)

(1.11)
where the field operators

ψ̂(x) =
∑
i

w(x− xi) b̂i (1.12)

are expanded in the wannier basis {w(x−xi)} for every site i in the optical lattice
[6]. Here, b̂i and b̂†i are annihilation and creation operators respectively at site i
that satisfy the following commutation relations

[b̂i, b̂j] = 0 , [b̂†i , b̂
†
j] = 0 , [b̂i, b̂

†
j] = δij . (1.13)

7



1.3 Optical lattice as a quantum emulator

Figure 1.5: Comparison between theory and experiment. Average density profile
〈n〉 with respect to radial distance r in units of lattice spacing d. Blue dots -
optical lattice experiment[31]: 9400 Cs-133 bosons are confined in a 2D square
optical lattice with intensity V0 = 5ER and trapping strength VT = 0.01nK.
Band structure calculations give the hopping strength t = 4.18nK and onsite
repulsion strength U = 10.79nK. Red line - numerical-exact Quantum Monte
Carlo simulation[37]: Single-band boson Hubbard model with interaction U/t =
2.58, temperature T/t = 5.98 and trapping strength VT/t = 0.00239, thereby
exhibiting normal-fluid phase. An excellent agreement has been observed.

In the limit of deep lattice (large V0), the bosonic homogeneous optical lattice 1.11
can be effectively mapped to the boson Hubbard model [34]

Ĥ − µN̂ = −t
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

ni(ni − 1)− µ
∑
i

ni (1.14)

where the summation 〈i, j〉 extends over all nearest neighbouring lattice sites, and
the chemical potential µ determines the total number of bosons in the system.
The boson Hubbard model 1.14 has been completely solved at least numerically
[32], with its phase diagram illustrated in figure 1.4 for different interactions U/t
and temperatures T/t. The first indirect evidence of a superfluid-insulator phase
transition was derived from the time-of-flight images obtained from the experiment
by M. Greiner et al in 2002 [33], which had been numerically confirmed by Quan-
tum Monte Carlo simulations 7 years later [32]. Recent experimental advancement
has enabled density probing within single-site resolution, [35, 36] and quantitative
agreement has been found in the direct comparison between theory and experi-
ment as illustrated in figure 1.5.
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Introduction

In the presence of parabolic trapping, the trapped boson Hubbard hamiltonian
[38] reads

Ĥ = −t
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

ni(ni − 1)−
∑
i

(µ− VTx2
i )ni . (1.15)

1.3.4 Fermions in an optical lattice

The hamiltonian for 2-component fermions in an optical lattice is

Ĥ =
∑
σ=↑,↓

∫
dx ψ̂†σ(x)

(
− ~2

2m
∇2 + V (x)

)
ψ̂σ(x)

+
1

2

∑
σ,σ′=↑,↓

∫
dx dx′ψ̂†σ(x)ψ̂†σ′(x

′)U(x,x′) ψ̂σ′(x
′)ψ̂σ(x) (1.16)

where the field operators

ψ̂(x) =
∑
i

w(x− xi) ĉi (1.17)

are expanded in the wannier basis {w(x−xi)} for every site i in the optical lattice
[6]. Here, ĉi and ĉ†i are annihilation and creation operators respectively at site i
that satisfy the following anti-commutation relations

{ĉi, ĉj} = 0 , {ĉ†i , ĉ
†
j} = 0 , {ĉi, ĉ†j} = δij . (1.18)

In the limit of deep lattice (large V0), the fermionic homogeneous optical lattice
1.16 can be effectively mapped to the Hubbard model [24]

Ĥ = −t
∑
〈i,j〉,σ

ĉ†iσ ĉjσ + U
∑
i

ni↑ni↓ (1.2)

where the summation 〈i, j〉 extends over all nearest neighbouring lattice sites, and
σ =↑, ↓. Unlike the bosonic case, the Hubbard model 1.2, being the simplest corre-
lation model for fermions, remains generally unsolved till today. Only for specific
cases like half-filling (〈n〉 = 1) could the Hubbard model 1.2 be solved exact nu-
merically via Quantum Monte Carlo methods [39]. At half-filling towards larger
interaction U/t, the Hubbard model is driven from the Mott insulating phase to
the antiferromagnetic phase with decreasing temperature T/t [39]. Unfortunately,
this cannot yet be confirmed by current experiments, due to tough challenges in
cooling the fermionic optical lattice system beyond the Neel temperature [40].
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1.3 Optical lattice as a quantum emulator

Away from half-filling is perhaps where the Hubbard model 1.2 is being the most
interesting with the conjecture of a superconductivity phase at low temperature.
With a belief of relevance to unconventional superconductivity, the Hubbard model
is probably one of the many scientific puzzles that remains urgently to be solved.
Numerically, the notorious negative-sign problem forbids the use of Quantum
Monte Carlo methods, which then brings up the interest of designing fermionic
optical lattices to be quantum emulators of the Hubbard model [25].
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Chapter 2

Quantum Monte Carlo

This chapter introduces an efficient Quantum Monte Carlo method [41], imple-
mented via the directed worm algorithm [42], that is used to solve the boson
Hubbard model 1.14 exact numerically at finite temperature.

2.1 Quantum statistical mechanics

2.1.1 Feynman path-integral formalism

Rewriting the boson Hubbard hamiltonian 1.14 as Ĥ − µN̂ = Ĥ0 − V̂ such that

Ĥ0 =
U

2

∑
i

ni(ni − 1)−
∑
i

µini (2.1)

V̂ = t
∑
〈i,j〉

b̂†i b̂j , (2.2)

the equation of motion for the evolution operator Û(τ, τ0) becomes

∂

∂τ
Û(τ, τ0) = V̂ (τ)Û(τ, τ0) (2.3)

in the interaction picture, taking ~ = 1 [43]. With

Û(τ, τ0) = eĤ0τ e−Ĥ(τ−τ0) e−Ĥ0τ0 (2.4)

V̂ (τ) = eĤ0τ V̂ e−Ĥ0τ , (2.5)

equation (2.3) becomes

Û(τ, τ0)− Û(τ0, τ0) =

∫ τ

τ0

dτ1V̂ (τ1)Û(τ1, τ0) (2.6)

11



2.1 Quantum statistical mechanics

or (τ = β, τ0 = 0),

Û(β) = 1 +

∫ β

0

dτ1V̂ (τ1)Û(τ1)

= 1 +

∫ β

0

dτ1 V̂ (τ1) +

∫ β

0

dτ1

∫ τ1

0

dτ2 V̂ (τ1)V̂ (τ2) + · · · (2.7)

According to equation (2.4), we have Û(β) = eβĤ0 e−βĤ , thus the partition function

Z = Tr e−βĤ = Tr e−βĤ0 Û(β) (2.8)

In Fock basis {|i〉}, the partition function can be written as

Z =
∞∑
m=0

∑
i1···im

e−βε1
∫ β

0

dτ1 · · ·
∫ τm−1

0

dτm
(
e−τ1ε1 Vi1i2 e

τ1ε2
)
· · ·
(
e−τmεm Vimi1 e

τmε1
)

(2.9)
where Ĥ0|i〉 = εi|i〉 and Vij = 〈i|V̂ |j〉.

2.1.2 Configuration and worldlines diagram

The integrand of the partition function Z in equation 2.9 is uniquely determined
if the configuration C = {m, i1 · · · im , τ1 · · · τm |0 < τ1 < · · · < τm < β} is known.
Defining the configuration weight

Z(C) = e−βε1
(
e−τ1ε1 Vi1i2 e

τ1ε2
)
· · ·
(
e−τmεm Vimi1 e

τmε1
)
, (2.10)

we have now a simpler notation

Z =
∑
C

Z(C) (2.11)

〈O〉 =
1

Z

∑
C

O(C)Z(C) (2.12)

for diagonal observables 〈O〉 = 1
Z

Tr Ôe−βĤ [41]. Here, O(C) is called the mea-
surement of Ô for configuration C. In practice, configurations are visualized as
worldlines diagrams. Figure 2.1.2 illustates an example of a worldlines diagram
that corresponds to the configuration C = {m = 8 ; i1 · · · i8 ; τ1 · · · τ8 | 0 < τ1 <
· · · < τ8 < β}. In this example,
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Quantum Monte Carlo

Figure 2.1: Example of a worldlines diagram of 1D boson Hubbard model with
10 sites. Horizontal axis: Site number 0, · · · , 9. Vertical axis: Imaginary time
τ/β ∈ [0, 1) periodic. Dotted line: 0 particle; Solid line: 1 particle; Double solid
line: 2 particles; Triple solid line: 3 particles. In this example, we set t = 1, U = 4,
µ0 = · · ·µ9 = 0, β = 2.

1. ∀ i, τ ∈ C, we have

τ1/β = 0.10 : |i1〉 = |0, 1, 0, 1, 3, 0, 1, 0, 2, 0〉 ; ε1 = 16

τ2/β = 0.30 : |i2〉 = |0, 0, 1, 1, 3, 0, 1, 0, 2, 0〉 ; ε2 = 16

τ3/β = 0.35 : |i3〉 = |0, 0, 1, 1, 3, 0, 0, 1, 2, 0〉 ; ε3 = 16

τ4/β = 0.50 : |i4〉 = |0, 0, 2, 0, 3, 0, 0, 1, 2, 0〉 ; ε4 = 20

τ5/β = 0.70 : |i5〉 = |0, 1, 1, 0, 3, 0, 0, 1, 2, 0〉 ; ε5 = 16

τ6/β = 0.75 : |i6〉 = |0, 1, 1, 0, 3, 0, 1, 0, 2, 0〉 ; ε6 = 16

τ7/β = 0.80 : |i7〉 = |0, 1, 0, 1, 3, 0, 1, 0, 2, 0〉 ; ε7 = 16

τ8/β = 0.90 : |i8〉 = |1, 0, 0, 1, 3, 0, 1, 0, 2, 0〉 ; ε8 = 16

2. ∀ i ∈ C, we have

Vi1i2 = 1 , Vi2i3 = 1 , Vi3i4 = 1 , Vi4i5 =
√

2

Vi5i6 =
√

2 , Vi6i7 = 1 , Vi7i8 = 1 , Vi8i1 = 1

3. For some diagonal observables O, we have

N : N(C) = 8

E0 : E0(C) = 16

13



2.2 Markov chain sampling

2.2 Markov chain sampling
The whole spirit of Quantum Monte Carlo (QMC) simulation is to obtain statistics
for 〈O〉 in equation 2.12 through random walking in the configuration space effi-
ciently according to some stochastic algorithm in mind. A Markov chain random
walk is a sequence of configurations , i.e. {C1, C2, · · · , CM}, such that any config-
uration Ci+1 in the sequence is in fact derived from its parent Ci, thus preserving
memory [44]. With importance sampling in accordance to the configuration weight
2.10, the Monte Carlo estimate

〈O〉MC =
1

M

M∑
i=1

Oi
M→∞−−−−→ 〈O〉

converges to 〈O〉 with increasing statistics1. The stochastic algorithm which gov-
erns the Markov chain random walk does not need to be unique, so long it satisfies
both the principle of ergodicity, as well as the principle of detailed balance [44]

Γ(Ci → Ci+1)Z(Ci) = Γ(Ci+1 → Ci)Z(Ci+1) . (2.13)

Here, the transition matrix Γ has been chosen to follow Metropolis, i.e.

Γ(Ci → Ci+1) = min

{
1,
Z(Ci+1)

Z(Ci)

}
(2.14)

which satisfies detailed balance automatically [46].

Metropolis algorithm

1. From the present configuration Ci, propose configuration C randomly.
2. Generate a random number u ∈ [0, 1].
3. Accept or reject the proposal, i.e.

Ci+1 =

{
C , u < min

{
1, Z(C)

Z(Ci)

}
Ci , otherwise

(2.15)

4. Perform a measurement every certain number of MC steps2.

1This convergence is guaranteed by the law of large numbers [45].
2The frequency of measurements should be adjusted according to the autocorrelation time in

the measurments.
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2.3 Directed worm algorithm

2.3.1 Local updates and non-ergodicity

Figure 2.2: Left → (←) Right : insertion (deletion) of vertices

Figure 2.3: Left → (←) Right : move vertex over time

Figure 2.4: Left → (←) Right : delete (insert) 1 particle

15



2.3 Directed worm algorithm

Figure 2.2, 2.3, and 2.4 illustrate some possible moves to update configurations
in the Markov chain random walk. These moves result in local updates of closed
worldlines that is unfortunately not universal. For instance, the Markov process
is not capable of creating a particle that winds over a periodic system (i.e. hori-
zontally from one boundary to another) starting from any configuration. Unless
one can "cut" some closed lines and move these segments randomly before "join-
ing" them eventually, the Markov process will never be ergodic with only these
moves. Having realised this, Prokof’ev and Svistunov proposed the worm algo-
rithm in 1998 [41], which is capable of sampling all configurations ergodically and
efficiently. After nearly a decade, Pollet proposed the directed worm algorithm [42]
which is a faster implementation compared to the original version.

2.3.2 Worms and extended configurations

Figure 2.5: Example of an extended worldlines diagram of 1D boson Hubbard
model with 10 sites. Horizontal axis: Site number 0, · · · , 9. Vertical axis: Imag-
inary time τ/β ∈ [0, 1) periodic. Dotted line: 0 particle; Solid line: 1 particle;
Double solid line: 2 particles; Triple solid line: 3 particles. In this example, we set
t = 1, U = 4, µ0 = · · ·µ9 = 0, β = 2.

An open worldline has 2 end points, called worms [41], as illustrated by a blue and a
red dot in figure 2.5. The blue dot, called the wormtail, is fixed at a specific location
in space-time, whereas the red dot, called the wormhead, moves around. In the di-
rected worm algorithm, the wormhead moves in a specific direction until bouncing
occurs. In fact, worms are either b̂(τp) or b̂†(τq) operators, that extend a configura-
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tion to an extended configuration Epq = {m, i1 · · · ip · · · iq · · · im , τ1 · · · τp · · · τq · · · τm | 0 <
τ1 < · · · < τp < · · · < τq < · · · < τm < β} of m vertices at imaginary times
τ1 · · · τm, and the annihilation (creation) operator at time τp (τq). The extended
configuration weight is naturally defined as

Z(Epq) = e−βε1
(
e−τ1ε1 Vi1i2 e

τ1ε2
)
· · ·
(
e−τpεp bp e

τpε′p

)
· · ·
(
e−τqεq b†q e

τqε′q

)
· · ·
(
e−τmεm Vimi1 e

τmε1
)

(2.16)
which sums up to the Green’s function [43] after normalization

G(xp, τp ; xq, τq) =
1

Z

∞∑
m=0

∑
i1···im

∑
ip,iq

e−βε1
∫ β

0

dτ1 · · ·
∫ τm−1

0

dτm

×
(
e−τ1ε1 Vi1i2 e

τ1ε2
)
· · ·

× · · ·
(
e−τpεp bp e

τpε′p

)
· · ·
(
e−τqεq b†q e

τqε′q

)
· · ·

× · · ·
(
e−τmεm Vimi1 e

τmε1
)

(2.17)

Density matrices are Green’s functions at equal time, i.e.

〈b†qbp〉 = G(xp, τ ; xq, τ) . (2.18)

2.3.3 Updates in extended configuaration space

We begin studying detailed balance by looking at the movement of wormhead from
extended configuration X to Y as illustrated above. From X to Y, the b̂† wormhead
1. moves forward in time from τp to τv unhalted,
2. jumps from site i to site j, thus creating a b̂†i b̂j vertex at time τv,
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2.3 Directed worm algorithm

3. moves forward in time from τ+
v to τp′ halted.

The reverse move, from Y to X, invokes the b̂† wormhead to
1. move backward in time from τp′ to τ+

v halted,
2. jump from site j to site i, thus annihilating the b̂†i b̂j vertex at time τv,
3. move backward in time from τ−v to τp halted.

According to equation 2.16, we have

Z(Y )

Z(X)
=

(
e−τp′εv 〈i′p|b̂

†
j|iv〉 eτp′ε

′
p

)(
e−τvεp 〈i′p|t b̂

†
i b̂j|iv〉 eτvεv

)
(
e−τpεp 〈i′p|b̂

†
i |ip〉 eτpε

′
p

) . (2.19)

Since Z(X)P (X → Y ) = Z(Y )P (Y → X), i.e.

P (X → Y )

P (Y → X)
=

(
εp e
−εpτvp e−εvτp′v

e−ε
′
pτp′v e−ε

′
pτvp

)
×

(
t〈i′p|b̂

†
j|iv〉〈i′p|b̂

†
i b̂j|iv〉

εp〈i′p|b̂
†
i |ip〉

)
(2.20)

(eg. τvp = τv − τp), what remains is simply to allocate the balanced probabilities
for the sub-moves.

Unhalted move in time

The first sub-move involves the movement of wormhead over time, as illustrated
in the above figure. Here, the transition probability from extended configuration
X1 to X2 is set as

P (X1 → X2) = εpe
−εpτp′p . (2.21)
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1. By unhalted move over time itself, it does not satisfy detailed balance. To
balance it, the unhalted move must be immediately followed by an attempt to
create a vertex at that new time τp′ . (See later section.)

2. In probability theory, the event of an attempt to create a vertex is naturally
regarded as a Poisson process, a direct consequence of definition 2.21, ie. the
time interval until the random new time τp′ follows an exponential distribution.

3. For the transition probability to make sense, the mean occurrence of such a
Poisson event is εp must be strictly positive, ie. εp > 0. In implementation,
the new time τp′ is stochastically generated with acceptance probability 1 such
that

τp′ − τp = τp′p = − log(1− u)

εp
(2.22)

where u ∈ [0, 1) is an uniformly distributed random number. If τp′ > β, then
τp′ will be "modulus"-ed by β, i.e. τp′ → τp′ % β.

4. In practice, the value of εp can turn out to be enormous, when the system
size gets large for instance. When this happens, the algorithm becomes very
inefficient. See later section for a clever fix.

Halted move in time

Implementing equation 2.22, a new time τp′ is stochastically generated with chances
that it exceeds τv such that τp′ > τv β-periodically. When that happens, the al-
gorithm halts the wormhead just before the vertex at time τ−v . For the halted
movement of wormhead over time, the transition probability from extended con-
figuration X1 to X2 must therefore be

P (X1 → X2) =

∫ ∞
τvp

εp e
−εpτp′p dτp′p (2.23)
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2.3 Directed worm algorithm

or
P (X1 → X2) = e−εpτvp (2.24)

1. By halted move over time itself, it does not satisfy detailed balance. To balance
it, the halted move must be immediately followed by an attempt to delete or
relink the vertex at time τv. (See later section.)

2. Halting of this kind only happens when the wormhead collides with a vertex
of conjugate type, ie. either a b̂† wormhead colliding with a b̂-vertex (in this
example), or a b̂ wormhead colliding with a b̂†-vertex.

3. There are occasions whereby the wormhead collides with a vertex of the same
type. See the following figure. When this happens, the algorithm first halts

the wormhead just before the vertex at time τ−v . Next, the wormhead crosses
the vertex with new time τ+

v with probability 1, which is a consequence of the
commutation relations [b̂, b̂] = [b̂†, b̂†] = 0. Finally, a new time is stochastically
generated again according to equation 2.22. Its validity will be justified in a
later section.

4. An useful property of Poisson events is its memorylessness, ie. the event
whereby the wormhead moves unhaltedly to a new time τp′ is stochastically
equivalent to the event whereby the wormhead first moves haltedly to an
intermediate time τv, then moves unhaltedly to τp′ . One can check easily from
equations 2.21 and 2.24.

Inserting, deleting, and relinking vertex

The figure below is a class of extended configurations that illustrate vertex inser-
tion, deletion, and relinking for 1D systems. (2D and 3D are natural generalisa-
tions.) Meanwhile, note that the time interval shown on the figure from τv to τ+

v
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is indeed over-exaggerated only for the purpose of clarity. In fact, being at time
τ+
v , the wormhead is just infinitesimally above the vertex at time τv for extended
configurations Y1, Y2. The following are the only 2 sub-moves in the algorithm

that involves an attempt to jump wormhead across sites.
1. Starting from X(f),

(a) the wormhead could jump to either Y (f)
1 or Y (f)

2 , and inserts a vertex along
the way;

(b) the wormhead could bounce, or turn around, to X(b).
2. Starting from Y

(b)
1 ,

(a) the wormhead could jump to X(b), and deletes the vertex along the way;
(b) the wormhead could jump to Y (f)

2 , and relinks the vertex along the way;
(c) the wormhead could bounce, or turn around, to Y (f)

1 .
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2.3 Directed worm algorithm

The algorithm fixes the following transition probabilities.

P (X, Y1, Y2 → X) = εv− 〈iv+ |b̂†j|iv−〉 (2.25)

P (X, Y1, Y2 → Y1) = t 〈iv+|b̂†i |iv〉〈iv|b̂ib̂
†
j|iv−〉 (2.26)

P (X, Y1, Y2 → Y2) = t 〈iv+|b̂†k|iv〉〈iv|b̂kb̂
†
j|iv−〉 (2.27)

To choose which of the sub-moves, one has either the choice of heatbath algorithm
or Metropolis algorithm. It is the preference of the author to choose the latter.
This completes the discussion for all sub-moves of the algorithm in the extended
configuration space.

Crossing vertex

For the above extended configurations, the relevant weights are

Z(X) = e−εpτp〈iv|b̂†|ip〉eεvτp × e−εvτv〈i′v|b̂†|iv〉eε
′
vτv

Z(Y ) = e−εpτv〈iv|b̂†|ip〉eεvτv × e−εvτ
+
v 〈i′v|b̂†|iv〉eε

′
vτ

+
v

or
Z(Y )

Z(X)
=
e−εpτvp

e−εvτvp

Balancing with Z(X)P (X → Y ) = Z(Y )P (Y → X), the algorithm sets

P (X → Y ) = e−εpτvp

P (Y → X) = e−εvτvp

The above transition probability suggests that whenever the wormhead collides
with a vertex of the same type at time τv, it first halts at time τ−v and then crosses
the vertex with probability 1 to a new time τ+

v . This global move is balanced.
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Summary of moves in extended configuration space

The following is the flow which summarises all balanced moves in the extended
configuration space. Without loss of generality, suppose that the wormhead is b̂†
and moves forward at time τp.
1. Propose a new time τp′ for the wormhead according to equation 2.22.
2. If the wormhead is not halted by any upcoming vertex during the move, then

(a) either the wormhead jumps to a neighbouring site at time τ+
v (moving in

the same direction) and creates a vertex along the way,
(b) or the wormhead turns around in direction (i.e.. bounces).

3. If the wormhead is halted by an upcoming vertex at time τv during the move,
then it is halted just before the vertex at time τ−v . Either one of the following
will occur.
(a) If the upcoming vertex is the wormtail, the wormpair (both the wormhead

and wormtail) will be removed. (See next section.)
(b) If the upcoming vertex is of the same type (b̂†), the wormhead crosses over

the vertex to a new time τ+
v with probability 1.

(c) If the upcoming vertex is of conjugate type (b̂), the wormhead
i. either the wormhead jumps to the neighbouring site at time τ+

v (moving
in the same direction), and deletes the vertex along the way,

ii. or the wormhead jumps to the neighbouring site of its neighbouring site
at time τ−v (moving in opposite direction), and relinks the vertex along
the way,

iii. or the wormhead turns around in direction (i.e. bounces).
4. If the wormpair still exists, repeat step 1. Note that if the wormhead now

moves backward in time, then the time signs all change in the above.

Rescaling the diagonal energy
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For the algorithm to be more efficient, the diagonal energy should be rescaled. A
smart choice is

ε< ← ε< −min{ε<, ε>}+ εoffset (2.28)
ε> ← ε> −min{ε<, ε>}+ εoffset (2.29)

where the offset energy εoffset can be any choice of positive number, i.e. εoffset > 0.
Advanced users tune εoffset for better algorithmic efficiency. This choice ensures
that ε<, ε> > 0.

Updating density matrix

Whenever the wormhead touches the imaginary plane crossing the time of the
wormtail, the worms are at equal time. When this happens, the corresponding
density matrix element is updated.

2.3.4 Updates in configuration space

The objective of the directed worm algorithm is to generate new configurations
via the extended configuration space stochastically. A configuration becomes an
extended configuration upon the creation of a wormpair, and the vice versa upon
its annihilation.

Wormpair creation/ annihilation

To insert randomly a wormpair, at any time τ ∈ [0, β), and at any of the L sites,
there are 4βL ways of doing so to any existing configuration, say X. The factor
4 comes from the fact that, first, either a b̂ − b̂† or b̂† − b̂ wormpair is created,
and second, either the b̂ or b̂† worm is the wormhead, thus the other the wormtail.
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Therefore, any configuration must be 4βL-degenerate in the extended configuration
space, and the relevant weights become

Z(X) = 4βL (2.30)
Z(Y ) = n (2.31)

where n is the number of particles enclosed within the wormpair. Since Z(X)P (X →
Y ) = Z(Y )P (Y → X), the algorithm defines the transition probabilities as

P (X → Y ) =
1

4βL
(2.32)

P (Y → X) =
1

n
. (2.33)

1. In the wormpair-creation process, the probability of locating a random time
and a random site is 1

4βL
. Therefore, the wormpair is always created with

probability 1.
2. In the wormpair-annihilation process, the probability of choosing any 1 of the

n particles to be annihilated is 1
n
. Therefore, the wormpair is always removed

with probability 1.

Summary of moves in configuration space

1. Starting from any configuration, randomly pick a time and a site.
2. At that location, either insert a b̂− b̂† or a b̂†− b̂ wormpair with 50-50 chance.

The following exceptions may arise.
(a) If there is no particle at that location, then insert a b̂† − b̂ wormpair with

50% chance. The other 50% chance goes to not inserting any wormpair.
(b) If the number of particles at that location has reached a maximum, then

insert a b̂− b̂† wormpair with 50% chance. The other 50% chance goes to
not inserting any wormpair.

3. Pick with 50-50 chance either b̂ or b̂† as the wormhead, and thus the other
being the wormtail.

4. The wormhead random-walks in the extended configuration space, until the
wormhead collides into the wormtail.

5. Remove the wormpair.
6. Repeat step 1.

Updating density matrix

1. Just before the annihilation of the wormpair, the diagonal density matrix
element is updated.
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2. Should any insertion of wormpair fail, the diagonal density matrix element is
updated.
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Chapter 3

Thermometry

This chapter discusses the theoretical thermometry schemes regarding optical lat-
tices. Throughout, I restrict the discussion to bosons. The chapter is based on
one of my publications [47].

3.1 Introduction

3.1.1 Temperature determination

Temperature is one of the important physical quantity that determines the phase
of any particular system. In the classical world, for instance, water exists as
either solid ice, liquid water or gaseous steam at different temperature and pres-
sure. In this example, the temperature can be indicated by a mercury-in-glass
thermometer, only because its temperature dependence of the volume property
has been previously known and calibrated. In general, a thermometer measures
a temperature-dependent property of a subsystem in thermal equilibrium with
the rest of the system. Here, the disturbance to the subsystem is assumed to be
negligible in the measurement process, such that it gets quickly relaxed back to
equilibrium by the bulk.

In the quantum limit towards atomic scale, temperature determination poses tough
challenges to experimentalists [48]. To be specific, validity and accuracy are the
two concerns. First, quantum measurements can cause a non-negligible distur-
bance to the subsystem, because in the atomic limit, the latter is not small after
all with respect to the bulk. We say such measurements to be destructive, i.e.
destroying the quantum state of the system, thus questioning fundamentally on
the validity of such temperature determination. Second, the accuracy of quantum
measurements is largely challenged by the Heisenberg uncertainty principle in the
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atomic limit. No longer could a single measurement be sufficient to determine the
temperature accurately. To enhance on its accuracy, either more information re-
garding the system must be made available, or more repetitive measurements have
to be performed. The latter, unfortunately, makes temperature determination of
quantum systems very expensive.

In particular, this chapter is only devoted to the subject matter of accurate temper-
ature determination for bosons parabolically-trapped in quantum optical lattices.

3.1.2 Physical system

In the tight-binding limit, parabolically-trapped bosons in a 3D optical lattice can
be accurately modelled by the single-band boson Hubbard Hamiltonian [38]

Ĥ − µN = −t
∑
〈i,j〉

b̂†i b̂j +
U

2

∑
i

ni(ni − 1)−
∑
i

(µ− VT r2
i )ni (1.15)

where Ĥ, in this chapter, specifically refers to the canonical Hamiltonian, and a
total number of N bosons exists in the optical lattice with chemical potential µ
and external harmonic trapping VT . The nearest-neighbour hopping t, and the
onsite repulsion strength U are derived from the lattice laser potential V0 through
band-structure calculations. In the Fock representation {|ni〉}, ni represents the
number of bosons at site i, and b̂i (b̂†j) is the annihilation (creation) operator at
site i (j). In the last term, ri denotes the displacement vector of site i from the
centre of the parabolic trap.

The thermodynamical properties of the system are theoretically summarised in the
partition function Z = Tr exp[−β(Ĥ − µN)] with inverse temperature β = 1/kBT
[10]. The physics of trapped bosons in an optical lattice (equation 1.15) is sum-
marized in the phase diagram illustrated in figure 1.4, where its phase is also
determined by the local density

〈n(r)〉 =
1

Z
Trn(r) exp[−β(Ĥ − µN)] . (3.1)

In the limit towards lower densities, the system becomes a normal fluid. In the
presence of a confining harmonic trap, the densities become inhomogeneous. In
particular, the densities become sparse in the wings due to huge potential energy
barrier. Therefore, the wings of the bosonic trapped system exhibit always the
normal-fluid phase.
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Figure 3.1: Cross sectional density n(r) of a 3D bosonic 87Rb optical lattice system
with N = 125000, averaged over 1000 independent measurements obtained from
a QMC simulation. Here, the parameters are U/t = 10 (left), 50 (right), T/t = 1,
and VT/t = 0.0277.

Recently, direct comparisons over time-of-flight images [32], and radial density
profiles [37], of bosonic optical lattices between theory and experiment have been
studied. Excellent quantitative agreements have been observed, and this builds
the confidence over the use of ab-initio Quantum Monte Carlo (QMC) (see chap-
ter 2) simulations of the single-band boson Hubbard Hamiltonian as a mimic of
the bosonic optical lattice experiments. In this chapter, independent experimen-
tal measurements are mimicked by uncorrelated QMC measurements, where the
autocorrelation time of τ < 0.2 has been strictly imposed for the uncorrelation
criterion. Figure 3.1 is an example.

3.1.3 Single site addressability

Recent progress over the use of florescence techniques in bosonic optical lattice
experiments has enabled single-site resolution/addressability of in-situ density im-
ages [36]. Figure 3.2 illustrates a single measurement of atom distribution for a 2D
bosonic optical lattice at different interaction strengths U/t [36]. The single-site
resolution gives the possibility to extract more information from the system. Hav-
ing more inputs such as density-density correlations and incompressibility enhance
the accuracy of temperature determination.

For 3D optical lattices, only the integrated densities

〈n(ρ)〉 =

∫
〈n(r)〉 dz (3.2)

along the line-of-sight, i.e. z-direction, can be captured by density imaging.
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Figure 3.2: A single measurement of atom distribution for an ultracold quantum
gas held in a two-dimensional optical lattice. The bosons, indicated by bright
spots, are confined towards the parabolic trap centre. The interaction strength
U/t increases from left to right, and thus transiting the system from being a
superfluid into being a Mott insulator. Recent experimental advancement enables
good visualisation of the Mott plateau (middle) around the trap centre up to
single-site resolution. At extremely large interaction strength U/t, there exists a
high probability to locate 2 bosons per site in the vicinity around the trap centre.
However, current fluorescence experiments could not distinguish a doublon from
a hole, therefore indicating dark spots around the centre (right). This figure is
replicated from Nature 467, 68 (2010). [36]

3.2 Fluctuation-dissipation thermometry

3.2.1 Theory

The theory behind fluctuation-dissipation thermometry starts with the differenti-
ation of 〈n(ρ)〉 w.r.t. µ, i.e.

∂〈n(ρ)〉
∂µ

=
∂

∂µ

∫
dz

1

Z
Trn(r) exp[−β(Ĥ − µN)]

=

∫
dz

1

Z
Tr βN n(r) exp[−β(Ĥ − µN)]

−
∫
dz

1

Z2

(
Tr βN exp[−β(Ĥ − µN)]

)(
Trn(r) exp[−β(Ĥ − µN)]

)
= β (〈n(ρ)N〉 − 〈n(ρ)〉〈N〉) (3.3)
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Figure 3.3: Illustration of the quantities entering the FD thermometry formula.
Shown from top to bottom are: (1) cross-sectional density n(r), (2) column-
integrated density n(ρ), (3) dissipation term L(ρ), (4) fluctuation term (ξ = 3)
R3(ρ), and (5) fluctuation term (ξ = ∞) R∞(ρ). We take a 3D bosonic 87Rb
optical lattice system with N = 125000, and we average over 1000 independent
measurements obtained from a QMC simulation. The parameters in the left col-
umn are U/t = 10, T/t = 1, and the parameters in the right column are U/t = 50,
T/t = 1. The trapping frequency is VT/t = 0.0091 (left), 0.0277 (right).
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or
kBT

∂〈n(ρ)〉
∂µ

= 〈n(ρ)N〉 − 〈n(ρ)〉〈N〉 . (3.4)

In the validity of the local density approximation (LDA), the column-integrated
density becomes

〈n(ρ)〉 LDA
= 〈n(µ;ρ)〉 (3.5)

where µ here refers to the local chemical potential in equation 3.5. The dissipation
term is therefore

L(ρ) =
∂〈n(ρ)〉
∂µ

LDA
= − 1

2VT

1

ρ

∂〈n(ρ)〉
∂ρ

. (3.6)

Defining the fluctuation term as

R(ρ) = 〈n(ρ)N〉 − 〈n(ρ)〉〈N〉 , (3.7)

the temperature T can be derived from the slope of the linear equation

kBTL(ρ) = R(ρ) . (3.8)

This is the proposal by Jason and Ho [49].

For some reasons, we have to generalize their proposal. Interested only in fluc-
tuations

Rξ(ρ) =

∫
dρ′ {〈n(ρ)n(ρ′)〉 − 〈n(ρ)〉〈n(ρ′)〉} θ(ξ − |ρ− ρ′|) (3.9)

within a window size ξ, the linear equation

kBTL(ρ) = Rξ(ρ) . (3.10)

remains still valid only if the value of ξ exceeds the density-density correlation
length of the system. Here, θ(·) is the Heaviside step function. For radial sym-
metric lattices, both the dissipation and fluctuation terms could be averaged over
the angular variable φ, i.e.

L(ρ) =
1

2π

∫
L(ρ) dφ (3.11)

R(ρ) =
1

2π

∫
R(ρ) dφ (3.12)

where ρ = ρ(ρ, φ). Figure 3.3 illustrates the scheme, and highlights the impor-
tance of noise control with correct window sizing. In the limit of infinite window
size, i.e. ξ → ∞, the noise in Rξ(ρ) grows beyond control which makes the FD
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thermometry scheme infeasible for accurate temperature determination.

Finally, the temperature T can be estimated from a least-squares fit taking the
measurement errors into account, i.e.(∑

i

R2
i

∆2
Li

)
−

(∑
i

LiRi

∆2
Li

)
T̂ = −

(∑
i

LiRi

∆2
Ri

)
T̂ 3 +

(∑
i

L2
i

∆2
Ri

)
T̂ 4 . (3.13)

Note that the FD thermometry scheme reduces to the proposal by Jason and
Ho in the limit of infinite window sizing, i.e. ξ →∞.

3.2.2 Window sizing

Accurate determination of temperature relies heavily on the noise control of Rξ(ρ)
with a correct window size of ξ. Due to a lack of knowledge of the density-
density correlation length, the optimal choice for ξ is unknown at first which is
to be determined through a systematic approach as illustrated in figure 3.4. In
this approach, ξ is gradually increased from 0 until it exceeds the density-density
correlation length, indicated by the linearity of the L(ρ)-R(ρ) plot. Increasing ξ
further will smear out the linearity due to increasing statistical noise in R(ρ). This
approach illustrates how the density-density correlation length could be found in
an experimental system. In this example, with a temperature of T/t = 1, the
optimal window size of ξ = 3 is sufficient to capture (almost) all the correlations.
Using ξ = 3 as the standard for T/t = 1 and higher temperatures, we show the

System nr of shots
ξ=3 ξ=∞

U/t = 10 , T/t = 1 20 O(104)
U/t = 10 , T/t = 3 14 O(104)
U/t = 50 , T/t = 1 21 O(104)
U/t = 50 , T/t = 3 12 O(104)

Table 3.1: Number of uncorrelated measurements needed to determine the temper-
ature accurately within 5% error for 3D 87Rb optical lattice experiments trapping
125,000 bosons. The variance reduction through window-sizing leads to orders of
magnitudes improvement, and thus making FD thermometry scheme as a feasible
tool for accurate temperature determination. The parameters are the same as in
figure 3.3.
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3.2 Fluctuation-dissipation thermometry

Figure 3.4: Illustration of the FD thermometry scheme by showing different
L(ρ)−Rξ(ρ) plots at various window sizes ξ = 0, 1, 2, 3, 5,∞. This approach illus-
trates how the density-density correlation length can be found in an experimental
system. When the window size is smaller than density-density correlation length,
systematic errors set in, and this results in nonlinear L(ρ)−R(ρ) behaviour, while
for ξ larger than the denisty-density correlation length, the behaviour of L(ρ)−R(ρ)
is linear. However, statistical noise also increases with increasing window size. The
parameters are the same as in figure 3.3.
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number of independent measurements needed to estimate the temperature within
5% error in Table 3.1. The enormous variance reduction through window sizing
turns the FD thermometry scheme into a feasible tool for ultracold bosonic optical
lattice experiments.

Figure 3.5: The FD thermometry scheme remains valid over 20% spread in temper-
ature T (left), and 1% spread in the particle number N (right). The parameters for
the 3D bosonic 87Rb system are N = 125000, U/t = 10, T/t = 1, VT/t = 0.0091.
Here, the optimal window size is ξ = 3, and 20 independent measurements are
obtained from a QMC simulation for accurate temperature determination within
5% error.

Figure 3.6: FD thermometry scheme at slightly lower temperature, for a 3D bosonic
87-Rb optical lattice with parameters N = 125000, U/t = 10, T/t = 0.5, VT/t =
0.0091. Here, the optimal window size is ξ = 5, and the data is obtained by
averaging over 100 independent measurements from a QMC simulation.

With 20 independent measurements uniformly distributed over 20% spread in T
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and 1% spread in N, the FD thermometry scheme remains applicable. See figure
3.5. At lower temperature, the scheme remains valid, although a larger ξ is needed,
and the statistical noise will inevitably grow. See figure 3.6. In this example, with
a temperature of T/t = 0.5, the optimal window size is ξ = 5, and 100 independent
measurements are required to attain an accurate temperature estimate within 5%
error.

3.2.3 Experimental imperfections

Density imaging with few-sites resolution

Although we aim at single-site resolution detection tools in the analysis of the
FD thermometry scheme in this chapter, the scheme remains applicable when the
resolution is just a few sites, therefore giving some room for possible experimental
imperfections. See figure 3.7. Here, we simulate such experiments with different
resolutions up to 5 sites, by varying the bin. The FD thermometry scheme suffers
from increasing systematic errors in the dissipation term L(ρ) both for U/t = 10
and for U/t = 50 at T/t = 1. Yet, a relatively linear L(ρ)-R(ρ) relationship could
still be observed on average. For these cases alone, the estimated temperatures do
not deviate more than 10% as shown in Table 3.2 . However, when the resolution
is worse than 5 sites, uncontrolled systematic errors dominate, and the scheme
fails.

n-site resolution estimated temperature
(binwidth) (units of t)

(U/t=10 , T/t=1): (U/t=50 , T/t=1):
1 0.977 ± 0.007 0.994 ± 0.008
2 0.990 ± 0.006 1.014 ± 0.007
3 0.997 ± 0.006 1.032 ± 0.007
4 1.016 ± 0.007 1.045 ± 0.008
5 1.048 ± 0.007 1.094 ± 0.008

Table 3.2: Estimated temperatures.
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Figure 3.7: The FD thermometry scheme remains applicable to in-situ density
experiments, which have a resolution of a few sites. The system consists of a 3D
optical lattice with N = 125000 bosonic 87Rb atoms. Increasing the bin width
increases the systematic error in the dissipation term L(ρ), but the temperature
estimate remains reliable. The parameters are the same as in figure 3.3. Here, the
optimal window size is ξ = 3, and 1000 independent measurements are averaged
out from a QMC simulation.

Density imaging with doublon-hole indistinguishability

Current single-site addressability experiments using fluorescence techniques can
only measure the parity (even-odd) of the occupation number per site [36]. This
experimental imperfection affects the FD thermometry scheme. Figure 3.8 illus-
trates the effect of double-hole indistinguishability.

An inspection of the L(ρ)-Rξ(ρ) plot shows a group of data points that fall on
the linear slope. These points correspond to the bosons at the edges. Deep in the
edges, the number of doublons is very low compared to the number of holes due to
the low overall density and the high potential-energy cost of creating a doublon.
By selecting those points in the L(ρ)-Rξ(ρ) plot that are on the linear slope, we
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3.2 Fluctuation-dissipation thermometry

Figure 3.8: FD thermometry scheme in the presence of double-hole indistinguisha-
bility. The parameters are the same as in figure 3.3. Blue circles (green squares)
show the curve where doublons can (cannot) be distinguished from holes.
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could still obtain an acceptable estimate of the temperature.

The estimated temperatures for this example are tabulated as follows.

System estimated temperature
(units of t)

U/t = 10 , T/t = 1 0.985 ± 0.008
U/t = 50 , T/t = 1 1.003 ± 0.012

3.3 Wing thermometry

3.3.1 Theory

Deep in the edges, or wings, there will always be a normal region for any temper-
ature T/t and interaction strength U/t where the system is well described by the
second-order high temperature expansion (HTE2).

In this section, we shall formulate the theory. Note that a slightly different nota-
tion from the paper will be used in this section for the sake of convenience.

The partition function of the system is

Z = Tr e−β(Ĥ−µN) = Tr e−β(D+V̂ ) (3.14)

where the diagonal/offdiagonal part reads

D =
U

2

∑
i

ni(ni − 1)−
∑
i

µini (3.15)

V̂ = −t
∑
〈i,j〉

b̂†i b̂j . (3.16)
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Since ∑
k

µknk ,
∑
〈i,j〉

b̂†i b̂j

 =
∑
k

∑
〈i,j〉

µk

[
b̂†kb̂k , b̂

†
i b̂j

]
=

∑
k

∑
〈i,j〉

µk

{
b̂†i

[
b̂†kb̂k , b̂j

]
+
[
b̂†kb̂k , b̂

†
i

]
b̂j

}
=

∑
k

∑
〈i,j〉

µk

{
−b̂†i b̂kδkj + b̂†kb̂jδki

}
=

∑
〈i,j〉

(µi − µj) b̂†i b̂j (3.17)

∑
k

n2
k ,
∑
〈i,j〉

b̂†i b̂j

 =
∑
k

∑
〈i,j〉

{
nk

[
b̂†kb̂k , b̂

†
i b̂j

]
+
[
b̂†kb̂k , b̂

†
i b̂j

]
nk

}
=

∑
〈i,j〉

{
(ni − nj)b̂†i b̂j + b̂†i b̂j(ni − nj)

}
=

∑
〈i,j〉

b̂†i b̂j(ni − nj + 2) , (3.18)

we derive the following important commutator[
D , V̂

]
= −t

∑
〈i,j〉

b̂†i b̂jγij (3.19)

where
γij = U(ni − nj) + U − (µi − µj) . (3.20)

The following are immediate consequences.[
D ,

[
D , V̂

]]
= −t

∑
〈i,j〉

b̂†i b̂jγ
2
ij (3.21)[

D
[
D ,

[
D , V̂

]]]
= −t

∑
〈i,j〉

b̂†i b̂jγ
3
ij (3.22)

Using the relation

eτD V̂ e−τD = V̂ + τ
[
D , V̂

]
+
τ 2

2!

[
D ,

[
D , V̂

]]
+ · · · (3.23)
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we arrive at
eτD V̂ e−τD = −t

∑
〈i,j〉

b̂†i b̂je
τγij . (3.24)

Next, we expand the partition function up to second order in V̂ , i.e.

Z = Tr e−βD +

∫ β

0

dτ1

∫ τ1

0

dτ2 Tr e−βD eτ1D V̂ e−τ1D eτ2D V̂ e−τ2D . (3.25)

Zeroth order

Defining
Z(0) = Tr e−βD , (3.26)

we have
Z(0) =

∑
{ni}

∏
i

e−βDi =
∏
i

∑
ni

e−βDi =
∏
i

Z
(0)
i (3.27)

where

Z
(0)
i =

∞∑
ni=0

e−βDi (3.28)

Di =
U

2
ni(ni − 1)− µini (3.29)

The zeroth-order density is therefore

〈n(0)
i 〉 =

1

Z(0)
Trni e

−βD =
1

Z
(0)
i

∞∑
ni=0

ni e
−βDi . (3.30)

Second order

Expressing
Z ≈ Z(0)(1 + Z(2)) (3.31)

such that

Z(2) =
1

Z(0)

(∫ β

0

dτ1

∫ τ1

0

dτ2 Tr e−βD eτ1D V̂ e−τ1D eτ2D V̂ e−τ2D
)
, (3.32)

we arrive at

Z(2) = (−t)2
∑
〈i,j〉

1

Z
(0)
i

1

Z
(0)
j

∫ β

0

dτ1

∫ τ1

0

dτ2

 ∑
nδi=ni−1

∑
nδj=nj+1

nin
δ
je
−βDie−βDjeτ1γ

δ
ijeτ2γji

+
∑

nδj=nj−1

∑
nδi=ni+1

njn
δ
i e
−βDie−βDjeτ1γ

δ
jieτ2γij

 . (3.33)

41



3.3 Wing thermometry

Next, we perform the integrals. If γδij = γji = 0,∫ β

0

dτ1

∫ τ1

0

dτ2 e
τ1γδijeτ2γji =

β2

2
, (3.34)

otherwise,∫ β

0

dτ1

∫ τ1

0

dτ2 e
τ1γδijeτ2γji = β2

[
1− eβγδij

(βγδij)(βγji)
− 1− eβγδij+βγji

(βγδij + βγji)(βγji)

]
(3.35)

Defining

Γδij =
1− eβγδij

(βγδij)(βγji)
− 1− eβγδij+βγji

(βγδij + βγji)(βγji)
, (3.36)

we have

Z(2) =
∑
〈i,j〉

(−βt)2

Z
(0)
i Z

(0)
j

(−,+)∑
ninj

nin
δ
je
−β(Di+Dj)Γδij +

(+,−)∑
ninj

nδinje
−β(Di+Dj)Γδji

 (3.37)

where (−,+) stands for (nδi = ni − 1, nδj = nj + 1), and vice-versa for (+,−).

Since
〈ni〉 = − 1

β

∂

∂µi
logZ , (3.38)

we have

〈ni〉 ≈ −
1

β

∂

∂µi

[
logZ(0) + log(1 + Z(2))

]
≈ 〈n(0)

i 〉 −
1

β

∂Z(2)

∂µi
. (3.39)

After differentiation, the density, up to the second order, is

〈ni〉 = 〈n(0)
i 〉 +

∑
〈i,j〉

(−βt)2

Z
(0)
i Z

(0)
j

×

(−,+)∑
ninj

(
ni − 〈n(0)

i 〉+
χδij
Γδij

)
nin

δ
je
−β(Di+Dj)Γδij

+

(+,−)∑
ninj

(
ni − 〈n(0)

i 〉+
χδji
Γδji

)
nδinje

−β(Di+Dj)Γδji

 (3.40)

where

χδij =
eβγ

δ
ij

(βγδij)(βγji)
+

1− eβγδij+βγji
(βγδij + βγji)(βγji)2

−
(1− eβγδij)(βγδij − βγji)

(βγδij)
2(βγji)2

. (3.41)
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Figure 3.9: Illustrating the concept of wing thermometry for a 3D bosonic 87Rb
optical lattice system, ie., describing the normal state by high temperature series
expansions. Blue circles: In-situ density profile obtained from 100 uncorrelated
measurements obtained by a QMC simulation with parameters U/t = 10 , T/t = 3
, N = 125, 000. The superfluid-normal phase boundary occurs at the density
〈n〉 = 0.42 or chemical potential µ/t = −2.75. The second order series captures
all the physics in the normal regime, whereas the zeroth order has a very small
validity range.

3.3.2 Advantages and limitations

Figure 3.9 illustrates the concept of wing thermometry.
1. The zeroth order expansion does a poor job in describing the densities at the

edges of the system, as also indicated in reference [50].
2. The second order expansion gives a fairly accurate description of the densities

over the edges if they exhibit normal behaviour. The second order expansion
captures the entire physics in the normal regime.

As illustrated in the example, the second order densities match almost exactly
with the in-situ density profile, obtained from 100 independent measurements of a
QMC simulation, over the entire normal region. Here, the superfluid-normal phase
boundary is determined from LDA calculations.

In the extreme case where the entire region is normal, the HTE2 thermome-
try scheme becomes an extremely powerful thermometer. See figure 3.10. In fact,
only a single measurement is sufficient to accurately estimate both the temperature
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Figure 3.10: Second order high temperature series expansion thermometry scheme
for a bosonic system that is entirely in the normal phase. No more than a single
shot of cross-sectional density is needed to estimate the temperature and chemical
potential within 10% accuracy. We take a 3D optical lattice system with bosonic
87Rb atoms and parameters N = 125, 000, µ/t = 25.97, U/t = 50, T/t = 3. The
blue circles are obtained from a single measurement in a QMC simulation; and the
red line is a least-square fit over the entire normal region where µfit/t = 25.92 and
Tfit/t = 2.824 nK.

T and chemical potential µ up to 10% error within the HTE2 thermometry scheme.

In the limit of very low temperatures where the normal wings become too nar-
row, it may be that the density in the edges is so low that it cannot be measured
due to low signal-to-noise ratio. When this happens, HTE2 thermometry scheme
becomes infeasible. It is possible to use higher-order thermometry schemes, but
the gain is minimal compared to the additional effort.
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Chapter 4

Quantitative simulations

This chapter is devoted to quantitative simulations of bosons trapped in an actual-
size 3D optical lattice with simulation parameters mimicked as realistically to the
experiments as possible, which are quantitatively modelled by the boson Hubbard
model [34], i.e.

Ĥ − µN = −
∑
〈i,j〉

tij b̂
†
i b̂j +

∑
i

Ui
2
ni(ni − 1)−

∑
i

µini , (4.1)

and efficiently solved by the Quantum Monte Carlo (directed) worm algorithm [41]
([42]). The spirit behind this algorithm has been discussed in detail previously in
Chapter 2, and its implementation fully outlined in Appendix A.

This chapter is based on one of my publications [51], which highlights this state-
of-art algorithmic implementation to be one of the fastest, if not the fastest, in the
world till date. In particular, current simulations are ultra robust, which are capa-
ble of handling up to 10 million lattice sites. Of which, some manage to converge
results in no longer than a couple of hours.

4.1 Mimicking the experiments
Mimicking the experiments by Bloch [32], the optical lattice anisotropy gives rise
to direction-dependent band structure parameters (refer to appendix A.1), i.e.

tij = tx , ty , or tz

Ui = U

µi = µ− (VTxx
2
i + VTyy

2
i + VTzz

2
i )

which become increasingly valid in the close vicinity towards the centre of the
optical lattice trap.
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4.1.1 Momentum distribution and time-of-flight image

The momentum distribution of bosons in an optical lattice at equilibrium is

〈n(~k)〉 = 〈ψ̂†(~k)ψ̂(~k)〉 (4.2)

=
1

L3

∫
d~r d~r′〈ψ̂†(~r)ψ̂(~r′)〉 ei~k·(~r−~r′)

=
1

L3

∑
i,j

∫
d~r d~r′w(~r − ~ri) ei

~k·(~r−~ri) w(~r′ − ~rj) ei
~k·(~r′−~rj) 〈b̂†i b̂j〉 ei

~k·(~ri−~rj) .

Defining the Fourier transform of the wannier function w(~r) as

w̃(~k) =
1√
L3

∫
d~r w(~r) e−i

~k·~r , (4.3)

and the interference term

S(~k) =
∑
i,j

〈b̂†i b̂j〉 ei
~k·(~ri−~rj) (4.4)

the momentum distribution becomes

〈n(~k)〉 = |w̃(~k)|2S(~k) . (4.5)

which is indirectly probed in experiements by a time-of-flight image [32], i.e.

〈nf (~k)〉 ≈ |w̃(~k)|2
∑
i,j

〈b̂†i b̂j〉 ei
~k·(~ri−~rj)−iγf (r2i−r2j ) , (4.6)

having time-of-flight phase γf = m
2~tf

with tf being the actual time of flight. (See
Appendix A.2 for its derivation.)

Exploiting the symmetries

〈nf (~k)〉 = 〈nf (−~k)〉 (4.7)
〈b̂†i b̂j〉 = 〈b̂†j b̂i〉 (4.8)

equation 4.6 reduces to

〈nf (~k)〉 ≈ |w̃(~k)|2
∑
|rα|≥0

gf (~rα) cos(~k · ~rα) , (4.9)

with time-of-flight Green function defined as

gf (~rα) =
∑

i,j :~ri−~rj=±~rα

〈b̂†i b̂j〉 cos(γf (r
2
i − r2

j )) . (4.10)
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Quantitative simulations

Last but not least, the time-of-flight image observed in experiments are column-
integrated along the line-of-sight, say the z-direction:

〈nf (kx, ky)〉 =

∫
dkz〈nf (~k)〉 , (4.11)

as illustrated in figure 4.1.
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Figure 4.1: Time of flight images (equation 4.11) obtained from QMC-DWA sim-
ulations mimicking optical lattice experiments as realistically as possible, with
interaction strength U/t = 8.11 (left) , 27.5 (right) at temperature T/t = 1. The
anisotropic optical lattice, with lattice strength ~V0 = (8.8Erx, 8Ery, 8Erz) (left),
(12.64Erx, 11.75Ery, 11.75Erz) (right), and laser wavelength ~λ = (765, 843, 843)nm,
confines 2.8 × 105 (left), 9.4 × 104 (right) bosons in a parabolic trap ~VT =
(17.1, 10.9, 11.3)Hz (left), (19.9, 13.0, 13.4)Hz (right). The horizontal axes are
kx and ky in units of 2π, and the vertical axis is the time-of-flight distribution
〈nf (kx, ky)〉 in unit of inverse momentum area resolution (∆kx∆ky)

−1, taking ex-
perimental value (∆kx∆ky) ≈ 0.12 in units of (2π)2. See appendix A.3 for further
details.

Important quantities that derive from the time-of-flight distribution include the
condensate fraction

fc = 〈nf (0, 0)〉 , (4.12)

and the visibility

V =
〈nf (0, 0)〉 − 〈nf (π, π)〉
〈nf (0, 0)〉+ 〈nf (π, π)〉

. (4.13)
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4.1 Mimicking the experiments

4.1.2 Density profile

The density profile of bosons in an optical lattice at equilibrium

〈n(r)〉 =
1

Z
Trn(r) exp[−β(Ĥ − µN)] (3.1)

is usually measured cross-sectional 〈n(x, y, z = 0)〉, or column-integrated
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Figure 4.2: Cross-sectional (top) and column-integrated (bottom) density profiles
obtained from QMC-DWA simulations mimicking optical lattice experiments as
realistically as possible, with interaction strength U/t = 8.11 (left) , 27.5 (right)
at temperature T/t = 1. The anisotropic optical lattice experiments take the same
setup parameters as in figure 4.1. See appendix A.4 for further details.

〈n(x, y)〉 =

∫
〈n(~r)〉 dz (4.14)

in experiments, as illustrated in figure 4.2.
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Quantitative simulations

4.2 Beyond parabolic trapping
In this section, we attempt to quantify the non-parabolic effect of gaussian traps
due to the 1/e2-waist.

4.2.1 Quantifying error budgets

The first step is to quantify the error budgets for a certain 3D optical lattice
experiemnt due to the various imperfections, as illustrated in table 4.1.

±5% fluctuations in estimated fluctuation in
〈E〉 〈n(0, 0, 0)〉 〈n(0, 0)〉 fc V

〈N〉 < 6% < 3% < 3% < 4% < 1%
∗a < 2% < 5% < 2% < 5% < 1%
∗V0x < 1% < 3% < 1% < 4% < 1%
∗λx < 1% < 2% < 1% < 6% < 1%

Table 4.1: Quantifying error budgets in energy 〈E〉, density at trap centre
〈n(0, 0, 0)〉, column-integrated density at trap centre 〈n(0, 0)〉, condensate fraction
fc, and visibility V , for a ±5% fluctuation in total particle number 〈N〉, s-wave
scattering length a, lattice strength V0x, and laser wavelength λx. The anisotropic
optical lattice experiments take the same setup parameters as in figure 4.1. The
estimated fluctuation is computed via QMC-DWA simulations, where the simula-
tions indicated by (*) are performed such that the total particle number is fixed
at 〈N〉 = 2.8× 105. See appendix A.5 for further details.

4.2.2 A first remark of waist correction

The three-dimensional optical lattice is radially confined by the trapping envelope

V0 exp

(
−2r2

w2
0

)
(1.4)

of waist (or 1/e2-radius) w0 [28]. Consider the same experiment as figure 4.1,
where a bosonic cloud spans over a radius L ∼ 50 in an optical lattice with spac-
ing d ∼ 400nm. A Gaussian trap with a typical waist of w0 ∼ 150µm will induce
an approximate 4.5% change over the lattice strength V0 from the trap centre.
Table 4.1 gives us a first idea of the most extreme variations over the physical
observables we may measure in the experiments. Special attention should be paid
to the spatial dependence of the lattice strength V0, and thus also the interaction
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4.2 Beyond parabolic trapping

strength U/t, in particularly to the next generation of experiments which involve
a bigger bosonic cloud size whereby the spatial dependence cannot be neglected
anymore.

In this chapter, however, we confine ourselves in the regime of current experiments,
where we neglect the spatial dependence of V0 due to Gaussian beam waist.

4.2.3 Corrections to parabolic trapping

For isotropic optical lattices, the correction to the trapping potential due to waist
effects is

∆VT (~r) = V0 −
2V0

w2
0

r2 − V0e
− 2r2

w2
0 , (4.15)

which has minimal effect on the measurements for current experiments, as illus-
trated in figure 4.3 for instance. However, the waist effects will become more
prominent in future experiments that involve bigger bosonic clouds.
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Figure 4.3: Cross-sectional density profiles obtained from QMC-DWA simulations
for 2.8×105 bosons trapped in an isotropic optical lattice with interaction strength
U/t = 8.1 at temperature T/t = 1. The lattice strength is taken to be 8.35 Er,
the laser wavelength 843 nm, and the s-wave scattering length 101 aB. Blue:
The trapping potential is assumed to be parabolic, with trapping frequency 10.5
Hz. Red: The trapping potential is corrected according to equation 4.15 with
w0 = 150µm. Waist correction reduces the density at the trap center 〈n(0, 0, 0)〉
by approximately 1%, therefore only spreading out slightly in the wings of the
bosonic cloud which is however statistically irrelevant.
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Chapter 5

Density functional theory

5.1 General formalism

5.1.1 Hohenberg-Kohn theorems

The foundation of density function theory is given by the following two Hohenberg-
Kohn theorems [53].

Theorem I:
The non-degenerate ground state density ρ(r) of interacting particles
is uniquely determined by the external potential V (r).1

Corollary I:
The non-degenerate ground state density ρ(r) is mapped one-to-one
to the many-particle wavefunction Ψ(r) of the interacting system.

Theorem II:
There exists a functional E[ρ] that depends only on the density ρ(r),
such that the minimum E[ρ0] is exactly the ground state energy.

1

Proof. Suppose there exists another external potential V ′(r) that gives ρ(r). Denoting the
hamiltonians Ĥ and Ĥ ′ repectively such that Ĥ|Ψ〉 = E|Ψ〉 and Ĥ ′|Ψ′〉 = E′|Ψ′〉, the density
can now be written as ρ(r) = |Ψ(r)|2 = |Ψ′(r)|2 by assumption. Now,

〈Ψ′|Ĥ|Ψ′〉 − 〈Ψ′|Ĥ ′|Ψ′〉 = ∫ dr (V (r)− V ′(r)) ρ(r)

〈Ψ|Ĥ ′|Ψ〉 − 〈Ψ|Ĥ|Ψ〉 = ∫ dr (V ′(r)− V (r)) ρ(r)

therefore E+E′ = 〈Ψ′|Ĥ|Ψ′〉+〈Ψ|Ĥ ′|Ψ〉 > 〈Ψ|Ĥ|Ψ〉+〈Ψ′|Ĥ ′|Ψ′〉 = E+E′ due to the variational
principle, resulting in a contradiction!
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5.1 General formalism

Instead of solving the Schrödinger equation for N interacting particles, the ground
state density and energy can be obtained exactly from a 3-dimensional minimiza-
tion of the corresponding functional E[ρ] if the latter is known. In practice, one
has to resort to reasonable approximation schemes for E[ρ]. This drastic reduction
in computational costs without much penalty to the accuracy is the main reason
why density functional theory is used as a workhorse in the field of conventional
material science today

5.1.2 Hohenberg-Kohn formalism

Following Hohenberg and Kohn (HK) [53], the exact ground state energy E and
ground state density ρ(r) can be determined by minimizing an energy functional
of the density:

E [ρ] =

∫
drV (r)ρ(r) + F [ρ]; (5.1)

where the first term is the potential energy due to the external potential V (r). The
second term is an unknown but universal functional which includes the interaction
and kinetic energies, but does not explicitly depend on V (r). The generalization
to potentially spin-polarized systems one introduces separate densities of the two
spin components ρ↑ and ρ↓:

E [ρ↑, ρ↓] =

∫
drV (r) [ρ↑ (r) + ρ↓ (r)] + F [ρ↑, ρ↓] , (5.2)

An explicit (but rather inaccurate) expression for F [ρ↑, ρ↓] is given by the Hohenberg-
Kohn local spin density approximation (HK-LSDA)

F [ρ↑, ρ↓] =

∫
dr ε(ρ↑(r), ρ↓(r)), (5.3)

where ε (ρ↑, ρ↓) is the ground-state energy density of a homogeneous Fermi gas with
the given spin densities2. In practice, ε (ρ↑, ρ↓) is obtained from accurate Quantum
Monte Carlo calculations, and takes the form of equation B.5. (See appendix B.)

2The Thomas-Fermi (TF) approximation is recovered as a mean field approximation for
ε (ρ↑, ρ↓). Here, the TF energy density is given by

εTF (ρ↑, ρ↓) =
3

5
ρ↑EF↑ +

3

5
ρ↓EF↓ , (5.4)

whereby only for the noninteracting case would the spin-up (down) Fermi energy be expressed
as

EF↑(↓) =
~2k2F↑(↓)

2m
=

~2

2m
(6π2ρ↑(↓))

2/3 (5.5)
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Density functional theory

5.1.3 Kohn-Sham formalism

The kinetic part is usually highly non-local and cannot be treated well under the
local approximation. Therefore, Kohn and Sham [54] proposed a more accurate
functional by explicitly including the exact kinetic energy T0 of non-interacting
fermions. What is left is the interaction energy EHXC, combining the usual Hartree
(mean field term) EH and the exchange-correlation correction EXC :

F [ρ↑, ρ↓] = T0 [ρ↑, ρ↓] + EHXC [ρ↑, ρ↓] . (5.6)

A simple yet often reliable treatment of EHXC is the local spin-density approxima-
tion (LSDA)

EHXC [ρ↑, ρ↓] =

∫
dr εHXC (ρ↑ (r) , ρ↓ (r)) , (5.7)

where the functional is replaced by an integral over the interaction energy density3

of a uniform system with the same local density. The objective is now to minimize
the total energy

E =

∫
dr
(
T0 [ρ↑, ρ↓; r] + V (r)

(
ρ↑(r) + ρ↓(r)

)
+ εHXC [ρ↑, ρ↓; r]

)
(5.9)

with respect to the spin densities (σ =↑, ↓)

ρσ (r) =

∫
Drj δ (r− r1)

∣∣∣∣∣∣
∏

σ′=↑,↓
det
[
φσ
′
n (rj)

]∣∣∣∣∣∣
2

=
occ∑
nσ

|φσn (r)|2 , (5.10)

where φσn (r) are normalized single-quasiparticle spin-orbitals filled to the Fermi
level. Minimizing equation 5.9 with respect to the complex conjugate quasiparticle
spin orbital φσ∗n (r) subjected to the normalization constraint

∫
dr |φσn (r)|2 = 1, we

arrive at the coupled Kohn-Sham (KS) eigenvalue equations [52](
− ~2

2m
∇2 + V (r) + V HXC

σ (ρ↑, ρ↓; r)

)
φσn = εσn φ

σ
n (5.11)

where the Langrange multiplier εσn is in fact the KS quasiparticle energy. Here, the
hartree-exchange-correlation potential is

V HXC
σ (ρ↑, ρ↓; r) =

δ

δρσ(r)
[εHXC(ρ↑, ρ↓; r)] (5.12)

3

εHXC (ρ↑, ρ↓) = ε (ρ↑, ρ↓)− 3

5
ρ↑

~2

2m
(6π2ρ↑)2/3 − 3

5
ρ↓

~2

2m
(6π2ρ↓)2/3 (5.8)

53



5.2 KS-DFT for fermionic optical lattice

It is convenient to define the KS single-quasiparticle hamiltonian

Ĥσ
KS = − ~2

2m
∇2 + V eff

σ (ρ↑, ρ↓; r) (5.13)

where the effective potential is V eff
σ (ρ↑, ρ↓; r) = V (r) + V HXC

σ (ρ↑, ρ↓; r).

5.2 KS-DFT for fermionic optical lattice

5.2.1 Lattice translational symmetry

In an optical lattice with periodicity d, i.e. V (r + d) = V (r), we shall make use
of Bloch’s theorem [29] to rewrite the KS quasiparticle orbitals as

φσnk (r) = e2πik·ruσnk (r) , (5.14)

with periodic Bloch orbitals uσnk (r). The wavevectors k run over the first Brillouin
zone of the reciprocal lattice. Working in the units of lattice spacing d = λ

2
and

recoil energy ER = ~2
2m

(
2π
λ

)2 (~ is the reduced Planck constant and m the atomic
mass), the coupled Kohn-Sham eigenvalue equations 5.11 become[

1

π2
(−i∇+ 2πk)2 + V eff

σ (ρ↑, ρ↓; r)

]
uσnk (r) = εσnku

σ
nk (r) . (5.15)

They must be solved self-consistently with the ground state densities

ρσ (r) =
∑
nk

|uσnk (r)|2 Θ (µ− εσnk) (5.16)

where Θ(· · · ) is the Heaviside function. The total ground state energy is calculated
from the set of all quasiparticle energies εσnk as

E =
∑
nkσ

εσnkΘ (µ− εσnk) (5.17)

up to the Fermi level. The Bloch orbitals are next expanded in the plane wave
basis

uσnk (r) =
∑
G

cσnk (G) exp (2πiG · r) , (5.18)

the KS equation (5.15) becomes a coupled set of matrix eigenvalue equations

4 (G + k)2 cσnk (G) +
∑
G′

V eff
G−G′c

σ
nk (G′) = εσnkc

σ
nk (G) (5.19)
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Density functional theory

for reciprocal vectors G. As a remark, the effective potential possesses both trans-
lational and inversion symmetry, and therefore its Fourier components

V eff
G =

1

M3

∫
unitcell

V eff (r) exp (−2πiG · r) dr (5.20)

must be real and related by V eff
G = V eff

−G.

5.2.2 Simple cubic lattice (Oh symmetry)

An isotropic three dimensional optical lattice with simple cubic (sc) geometry
possesses Oh point group symmetry [55], therefore likewise for the corresponding
reciprocal lattice and its band structure [29]. With M×M×M being the dimensions
of the lattice, the reciprocal lattice basis vectors read

b1 = x̂ , b2 = ŷ , b3 = ẑ (5.21)

and the reciprocal lattice vectors are

G =
m1

M
b1 +

m2

M
b2 +

m3

M
b3 (5.22)

wherem1,m2,m3 = 0,±1,±2, · · · . Knowing the point group symmetry of the band
structure reduces computational efforts greatly. The Oh point group possesses, for
instance, inversion (J) and reflection (σh, σd) symmetries [55], thus giving rise to
the following 48-fold degeneracy for the quasiparticle energies εσnk:
1. J-symmetry:

εσn(kx,ky ,kz) = εσn(−kx,−ky ,−kz) (5.23)

2. σh-symmetry:

εσn(kx,ky ,kz) = εσn(±kx,±ky ,±kz) (5.24)

3. σd-symmetry:

εσn(kx,ky ,kz) = εσn(ky ,kx,kz) (5.25)
εσn(kx,ky ,kz) = εσn(kx,kz ,ky) (5.26)
εσn(kx,ky ,kz) = εσn(kz ,ky ,kx) . (5.27)

Note that the same degeneracy exists likewise for the norm of quasiparticle orbitals
|φσn(r)|2, therefore reducing computational efforts further.

The high-symmetry k-points in the band structure of the sc lattice are
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5.2 KS-DFT for fermionic optical lattice

Notation k-point
Γ (0, 0, 0)
X (1/2, 0, 0)
M (1/2, 1/2, 0)
R (1/2, 1/2, 1/2)

In the event of anistropy along the z-direction, some of the degeneracies within
the Oh point group are lifted, thus resulting in a D4h point group. Its symmetry
can be easily worked out from the respective character table [55].

5.2.3 Face centered cubic lattice

A primitive cell, consisting of two adjacent lattice sites within simple cubic (sc)
geometry, translates to form a face centered cubic (fcc) lattice, therefore resulting
in a body centered cubic (bcc) reciprocal lattice [29]. With M×M×M being the
dimensions of the optical lattice, the reciprocal lattice basis vectors read

b1 =
1

2
(x̂ + ŷ − ẑ) , b2 =

1

2
(x̂− ŷ + ẑ) , b3 =

1

2
(−x̂ + ŷ + ẑ) (5.28)

and the reciprocal lattice vectors are

G =
m1

M
b1 +

m2

M
b2 +

m3

M
b3 (5.29)

where m1,m2,m3 = 0,±1,±2, · · · . The band structure still possesses Oh point
group symmetry which facilitates the reduction of computational efforts greatly.
The high symmetry k-points in the band structure of the fcc lattice are

Notation k-point
Γ (0, 0, 0)
X (1/2, 0, 0)
W (1/4, 1/2, 0)
L (1/4, 1/4, 1/4)

For two identical sites within the primitive cell of a fcc lattice, its band structure
is in fact equivilant to the band structure of a sc lattice. More specifically in this
scenario, each energy band of a sc lattice are folded into two bands of a fcc lattice
about some highly symmetric k-planes.
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Density functional theory

5.3 Remarks

5.3.1 Validity of Kohn-Sham density functional theory

The validity of Kohn-Sham density functional theory (DFT) for fermionic opti-
cal lattices can be tested through quantitative comparisons with direct Quantum
Monte Carlo (QMC) simulations4. The excellent agreement, as illustrated in figure
5.1, demonstrates that DFT calculations with an LSDA functional are extremely
reliable in weak and moderate optical lattices, therefore justifying its validity.
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Figure 5.1: Comparison of DFT results to QMC. Main panel: energy per
particle E/N vs. optical lattice intensity V0, at quarter-filling n = ρd3 = 0.5
with scattering length a = 0.04d. The green curve is the results of Kohn-Sham
DFT within the local spin-density approximation, the red points to Fixed-Node
Diffusion Monte Carlo simulations. Inset: cross-sectional density profile on one
lattice site, particularly at the lattice intensity of V0 = 2.0ER.

4We perform fixed-node diffusion Monte Carlo simulations for fermionic optical lattice, ex-
tended from the previous study of the homogeneous system [70]. To simulate Fermi gases in an
optical lattice of sinple cubic geometry, we employ the trial wave function (B.1) using the Bloch
states (5.14) (obtained by solving the equation (5.11) for different lattice depths V (r) without
scattering, i.e. a = 0) as single-particle orbitals. The Bloch states are expanded in a plane-wave
basis, as in equation (5.18), using up to 133 states. Unlike other Monte Carlo techniques for
the single-band Fermi-Hubbard model which are in principle reliable only for deep lattices, this
current version of continuous-space fixed-node diffusion Monte Carlo method allows one to simu-
late also moderate and shallow lattices. It is analogous to a recent bosonic Monte Carlo method
based on the ground-state Path-Integral Monte Carlo algorithm, which has been used to perform
a continuous-space simulation of the superfluid-to-insulator transition of hard-sphere bosons in
optical lattices, going beyond the single-band approximation [79].
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5.3 Remarks

5.3.2 Kohn-Sham band structure

Finally, we give an example of diagonalizing the Kohn-Sham hamiltonian 5.15 self-
consistently for a fermionic optical lattice with lattice depth V0 = 3ER, scattering
length a = 0.04d, and density at half-filling n = 1, of simple cubic geometry. The
energy band structure is given in figure 5.2.
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 (
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Figure 5.2: Kohn-Sham band structure of fermionic optical lattice with lattice
depth V0 = 3ER, scattering length a = 0.04d, and density at half-filling n = 1,
of simple cubic geometry. The dotted curves correspond to the band structure
of free fermions. (The fermi energy is set to be zero by convention.) The ground
state band is well separated from the excited bands, as evident in a finite band-gap
∆ > 0.

In fact, the band structure εσn(k) completely determines the physics of atomic Fermi
gases in weak to moderate optical lattice, in analog to weakly-correlated electrons
in material science. An important quantity that derives from the band structure
is the density of states

Dσ(ε) =
∑
nk

δ(ε− εσn(k)) (5.30)

which, for instance, could be used as an input into dynamical mean-field theory
simulations [56] to improve the accuracy of Kohn-Sham calculations.
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Chapter 6

Magnetism in optical lattice

6.1 Introduction
“ ... loadstone attracts iron because it has a soul.”

— Thales of Miletus, ∼ 585 B.C.
The peculiar phenomenon of magnetism has been intriguing mankind ever since
the times of Thales from Miletus [57]. It took till the year of 1887 for James Clerk
Maxwell to summarize all of classical electromagnetism macroscopically in his four
equations [2], which motivated Albert Einstein in his theory of special relativity
in 1905 [58]. Its enormous success firmly lay the fundamental basis for the entire
electrical and electronic engineering today. Microscopically, nature is governed by
the laws of quantum mechanics [3], which successfully explain the atomic origin of
magnetism. On the weak side, diamagnetism (paramagnetism) is the consequence
of orbital (spin) angular momentum coupling in electrons (unpaired electrons) with
external magnetic fields [10]. On the strong side, ferromagnetism is a consequence
of exchange interactions between electrons [59]. In a tight binding solid without
charge degree of freedom, ferromagnetism has been theoretically explained by the
Heisenberg model with qualitative success. Besides ferromagnetism, other types of
magnetism, such as antiferromagetism and ferrimagnetism, have been discovered
over the recent decades to exist in some solids at room temperature [20].

Not only in solids, exotic ferromagnetism has been recently discovered in 2009 to
exist in ultracold atomic Fermi gases at extremely low temperatures below 1 nK
[60], giving direct experimental evidence to the theoretical prediction for itinerent
ferromagnetism described by the Stoner model [59], i.e.

Ĥ =
∑
k,σ

εkĉ
†
kĉk +

1

2

U

N

∑
k1k2
q6=0

ĉ†k1+q ↑ĉ
†
k2−q ↓ĉk2 ↓ĉk1 ↑ . (6.1)
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6.2 Ferromagnetism in optical lattice

It is obvious that solids favour ferromagnetism over gases. Indeed, as will be shown
later in this chapter, itinerant ferromagnetism of atomic Fermi gases is stabilized
by an optical lattice with increasing laser intensity V0. Furthermore, calculations
from density functional theory recover the antiferromagnetic state towards the
Hubbard limit at half-filling, therefore justifying the validation of our theory.

This chapter is based on one of my publications [52].

6.2 Ferromagnetism in optical lattice

6.2.1 Probing ferromagnetism by Kohn-Sham DFT

Calculating the ground-state polarization

P =
ρ↑ − ρ↓
ρ↑ + ρ↓

(6.2)

for a range of lattice depths V0, band fillings n, and interaction strengths a/d based
on Kohn-Sham density functional theory 5.15, we obtain the phase diagrams shown
in figure 6.1.
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Figure 6.1: Phase diagrams at fixed optical lattice intensity V0. The
red-color intensity indicates the polarization P for optical lattice depths (a)
V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ER. The green and blue curves indicate,
respectively, the transitions to partially and fully polarized phases in homogeneous
systems (V0 = 0). The gray and yellow curves indicate the corresponding transi-
tions in the optical lattice. Ferromagnetism dominates in the region of large optical
lattice intensity V0 and scattering length a, where the non-trivial phase boundary
arises due to the Kohn-Sham band theory.
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Magnetism in optical lattice

In a shallow lattice with V0 = 0.5ER (figure 6.1(a)) we see three phases: a para-
magnetic phase at weak interactions (white), partially polarized (shown as pink
gradations), and fully polarized (ferromagnetic, shown in solid red). The phase
boundaries in this shallow lattice are similar to those of the homogeneous sys-
tem V0 = 0 [70], indicated by the green and blue lines. In deeper optical lattices
(V0 = 2ER in figure 6.1(b) and V0 = 4ER in figure 6.1(c)) polarization sets in
at much weaker interactions, indicating that the optical lattice strongly favours
itinerant ferromagnetism.
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Figure 6.2: Band structure. Shown are band structures for two lattice depths,
V0 = 2ER in the left column and V0 = 4ER in the right column, and three values of
scattering length (a = 0.04, 0.08, 0.16 d from top to bottom) at half-filling n = 1.
The blue and red curve corresponds to the majority and minority spin-component
respectively. The black curve is the result for an unpolarized noninteracting gas.
Energies are given relative to the chemical potential, shown as a dashed green
line at 0. The wave-vector values (given on the x-axis in units of scan a curve
which goes through the high symmetry points Γ = (0, 0, 0), X = (0, π/d, 0), R =
(π/d, π/d, π/d) and M = (π/d, π/d, 0) of the first Brillouin zone.
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6.2 Ferromagnetism in optical lattice

We can see two prominent features due to the presence of an optical lattice. The
first is the much bigger extent of the polarized phases, which is due to the higher
local density at the potential minima in the optical lattice, which increases the
local density beyond the critical value for polarization. A second striking effect is
the non-monotonic behavior of the phase boundary: there is a large fully polarized
region at densities up to half filling (n ≤ 1), which rapidly shrinks at higher filling.
This phenomenon is due to band structure effects and a gap between up-spin and
down-spin subbands.

Thus we next calculate the detailed band structure of the interacting system,
shown in the left panels of figure 6.2, for a weak optical lattice (V0 = 2ER) with-
out a band gap and on the right for a moderate optical lattice with a band gap
(V0 = 4ER). Weak interactions (a = 0.04d) change the band structure only slightly.
Increasing the interaction to a = 0.08d (second row) we find a partially polarized
state in the deeper lattice: the two spin subbands split and the band structure is
substantially changed. At even stronger interaction a = 0.16d (third row) the gas
is partially polarized also in the shallower lattice, and becomes fully polarized in
the deeper lattice. Note that here the fermions are fully polarized up to half band
filling n = 1, since only the up-spin subband gets occupied. Notice also that in the
fully polarized state the first band is fully occupied and the system is insulating
due to the gap between the first and second subbands. Filling the bands further
puts fermions in the next band with opposite spin, resulting in a partially polar-
ized state. This explains the sharp feature around n = 1 in the phase diagram in
figure 6.1(c). To recover full polarization for n > 1 one needs to increase either
interaction strength or lattice depth to push the energy of the lowest down-spin
subband above the second up-spin subband.

6.2.2 Inadequetcy of Hohenberg-Kohn DFT

Figure 6.3(a) and (b) illustrate the inadequetcy of Hohenberg-Kohn density func-
tional theory, where it fails to capture the non-trivial phase boundary for moderate
optical lattices that arises due to the Kohn-Sham band structure effects.

The complete absence of band structure effects in HK-LSDA also largely hand-
icaps itself to estimate correctly the density of states of the system as illustrated
in figure 6.4.
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Figure 6.3: KS-LSDA vs. HK-LSDA phase diagrams at fixed optical
lattice intensity V0. The red-color intensity indicates the polarization P for
optical lattice depths V0 = 4ER calculated by (a) KS-LSDA, and by (b) HK=LSDA
density functional theory. The green and blue curves indicate, respectively, the
transitions to partially and fully polarized phases in homogeneous systems (V0 =
0). The gray and yellow curves indicate the corresponding transitions in the optical
lattice. Ferromagnetism dominates in the region of large scattering length a, where
the non-trivial phase boundary arises due to the Kohn-Sham band theory, which
cannot be captured using HK-LSDA.
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Figure 6.4: Density of states. Results of Kohn-Sham DFT calculations at half-
filling n = ρd3 = 1 with optical lattice intensity V0 = 3ER and scattering length
a = 0.12d are shown indicated by the blue (red) symbols for the majority (minor-
ity) spin component. The density of states of the interacting gas is compared to
that of non-interacting species (black crosses), and that obtained in the HK-LSDA
method (green line), which shows no band gap. The Fermi level is at E = 0.
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6.3 Antiferromagnetism in optical lattice

6.3 Antiferromagnetism in optical lattice
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Figure 6.5: Phase diagram and antiferromagnetic (AF) band structure at
half filling n = ρd3 = 1. Left: Ferromagnetic (antiferromagnetic) phases are indi-
cated by the red-colored polarization (blue-colored staggered polarization). As the
scattering length a increases, the fermionic optical lattice undergoes phase tran-
sitions from an unpolarized to an antiferromagnetic and finally to ferromagnetic
phase. Right: To observe antiferromagnetism, the unit cell has to be doubled,
resulting in a face centered cubic (fcc) lattice. A spin-density-wave gap ∆SDW

shows up in the antiferromagnetic state of an optical lattice with laser intensity
V0 = 4ER and scattering length a = 0.08d. Here, the high symmetry points are
Γ = (0, 0, 0), X = (0, π/d, 0), L = (π/2d, π/2d, π/2d) and W = (π/2d, π/d, 0).

To see antiferromagnetism competing with ferromagnetism at half band filling
n = 1 we need to consider a unit cell consisting of two lattice sites, and compare
the energies of antiferromagnetic and uniform configurations. We find, as shown
in figure 6.5(a), that antiferromagnetic ordering is preferred at intermediate in-
teraction strengths and half band filling, matching with the single band Hubbard
model physics that becomes valid in the upper left hand corner of the shown phase
diagram.

Last but not least, antiferromagnetic symmetry breaking opens up an additional
spin-density-wave (SDW) gap ∆SDW in the folded ground-state band as shown
in figure 6.5(b). This provides experimentalists an indirect method to probe for
antiferromagnetism in fermionic optical lattices.
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Chapter 7

Conclusion and outlook

This thesis explores the bridge between the theories and experiments of three-
dimensional optical lattices, through large-scale computational numerics in the
quantitative aspect.

Experiments with bosons at equilibrium have been largely successful in developing
state-of-art techniques to probe for time-of-flight images [32], as well as in-situ
density profiles up to the precision of single-site resolution [36]. On the other
hand, the theoretical picture of describing by the boson Hubbard model has been
quantitatively confirmed with numerical-exact large scale Quantum Monte Carlo
simulations implemented in the directed worm algorithm [41, 42], at least for the
time-of-flight images [32]. New theoretical proposals are currently made feasible
due to the high precision in experiments, in particularly the fluctuation-dissipation
thermometry scheme [49, 47]. In this thesis, we perfected this concept proposed
by Zhou and Ho [49] for bosonic optical lattices in reality by reducing the unde-
sirable noise through window sizing technique. This modified scheme has been
numerically tested to give realiable estimates of the thermodynamic temperature
even in the presence of various experimental imperfections, therefore proving itself
to be a feasible quantitative thermometer for optical lattices. Highlighted in this
thesis is also the wing thermometry scheme which is numerically tested to work for
large enough normal-wings of the bosonic cloud. As the bosonic cloud increases in
size for future experiments, the normal-wings get spread out due to waist effects,
therefore enhancing the feasibility of the wing thermometry scheme in the soon
coming future.

Future experiments with bosons will involve a much bigger bosonic cloud with
different lattice geometries at lower temperatures, thereby challenging the theo-
retical limits of numerical computation for direct quantitative validations. Facing
this challenge, we need therefore an ultra-robust implementation of the QMC di-
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rected worm algorithm [42] that can handle simulations of that monstrous scale.
For the benefit of the scientific community, we decide to publish our code1 which
has been designed for such purposes. Its performance is ultra-robust, such that it
could handle simulations of up to some 10 million lattice sites numerical-exactly,
and some of which manage to converge in a couple of hours. In fact, this is defi-
nitely one of the fastest, if not the fastest, in the world till date.

Luck, on the other hand, is not (yet) with the fermions. Current experiments
with fermions are still relatively hot to realize the conjectured antiferromagnetic
or superconducting phases predicted from theory. While the experimentalists are
tediously cooling the fermions, the theoreticians are also questing to solve the
Hubbard model which is believed to be the theory behind high-Tc superconduc-
tors as well as other strongly-correlated materials. Handicapped by the notorious
negative-sign problem for fermions, Quantum Monte Carlo methods prove to be
pretty undesirable. Motivated by the success of density functional theory for con-
ventional materials, we apply it for the first time to ultracold fermions in a shallow
optical lattice. We find that Stoner ferromagnetism, which was recently discovered
to exist in ultracold fermionic gases [60], gets stablized by the optical lattice due
to band structure effects. Besides, the antiferromagnetic phase is recovered quali-
tatively in the Hubbard model limit at half-filling by density functional theory, in
which we find the existence of a spin-density-wave gap that could be used as an
indirect probe for antiferromagentism in future experiments.

Perhaps not in the distant future would optical lattices be eventually realized
as quantum emulators, thereby solving the long theoretical puzzle of strongly-
correlated physics. Only by then could new materials with surprisingly exotic
properties be predicted and engineered, which is in fact the ultimate aim of the
optical lattice emulator (OLE) project. Today, optical lattices provide a vast un-
precented opportunity to explore also the non-equilibrium dynamics of quantum
many-body systems, and it is the view of the author that we will embrace a new
era of quantum engineering for our human civilization in the coming decades.

1The DWA code is published in reference [61] as a part of the ALPS project. It is written
in C++ for maximal performance, and interfaced in Python for easy data management and
analysis. It has been designed for easy automation of large-scale simulation chains. With ALPS,
the DWA code can now handle robustly large datasets, as well as lattice geometries of all kinds.
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Appendix A

Implementing quantitative
simulations

A.1 Optical lattice bandstructure
A three-dimensional optical lattice is setup by 3 pairs of counter-propagating laser
beams in orthogonal directions with lattice intensity ~V0 = (V0x, V0y, V0z) and wave-
length ~λ = (λx, λy, λz). In units of lattice spacing ~d = ~λ/2, and recoil energy
~ER = h2

2m

(
1
λ2x
, 1
λ2y
, 1
λ2z

)
, the single particle Bloch hamiltonian [38] reads

Ĥk =
1

π2

(
−i∇+ 2π~k

)2

+
∑

α=x,y,z

V0α sin2(πxα) (A.1)

which is clearly separable. Along a direction, say x, the eigenvalue problem is
reduced to [

1

π2
(−i∂x + 2πkx)

2 + V0x sin2(πx)

]
ukx(x) = εkxukx(x) (A.2)

with kx = 0, 1
L
, · · · , L−1

L
for a periodic lattice of size L3. Expanding in the plane

wave basis,

ukx(x) =
1√
L

∑
G=0,±1,±2···

c
(kx)
G ei2πGx , (A.3)

equation A.4 becomes the following tridiagonal eigenvalue problem(
4 (G+ kx)

2 +
V0x

2

)
c

(kx)
G − V0x

4
c

(kx)
G−1 −

V0x

4
c

(kx)
G+1 = εkxc

(kx)
G . (A.4)

The wannier function is defined as

wx(x) =
1√
L

∑
kx

ukx(x)ei2πkxx =
1

L

∑
kx

∑
G

c
(kx)
G ei2π(G+kx)x . (A.5)
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A.1 Optical lattice bandstructure

Important bandstructure parameters are the hopping strength

tx = − 1

L

∑
kx

εkxe
−i2πkx (A.6)

(likewise for ty and tz), and the onsite interaction strength

U = g

∫
|w(~r)|4 d~r =

4πas~2

m

∫
|w(~r)|4 d~r (A.7)

where as is the s-wave scattering length easily tunable via Feshbach resonance
technique. Finally, the Fourier transform of the wannier function is

w̃x(qx) =
1√
L

∫
wx(x)e−i2πqxx dx =

1√
L

∑
kx

∑
G

c
(kx)
G δqx,G+kx . (A.8)

Easy implementation is available in the Python interface, for example:
>>> import numpy;
>>> import pyalps.dwa;
>>>
>>> V0 = numpy.array([8.805, 8. , 8. ]); #lattice strength [Er]
>>> wlen = numpy.array([765., 843., 843.]); #laser wavelength [nm]
>>> a = 101; #s−wave scattering length [bohr radius]
>>> m = 86.99; #mass [a.m.u.]
>>> L = 160; #lattice of size L^3
>>>
>>> band = pyalps.dwa.bandstructure(V0, wlen, a, m, L);
>>>
>>> band

Optical lattice:
================
V0 [Er] = 8.805 8 8
lamda [nm] = 765 843 843
Er2nK = 188.086 154.89 154.89
L = 160
g = 5.51132

Band structure:
===============
t [nK] : 4.77257 4.77051 4.77051
U [nK] : 38.7027
U/t : 8.1094 8.1129 8.1129
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Implementing quantitative simulations

A.2 Expression for finite time-of-flight
To probe for momentum distribution, the optical lattice is momentarily turned off,
and the bosons expand freely with momentum gained from the previous lattice
momentum. Measurements are performed in our classical world, and therefore
semiclassical treatment is already sufficient, i.e.

~~k = m

(
~r

tf

)
(A.9)

where tf is the actual time of flight taken by the bosons to move from the origin
(experiment) to the detector probe at position ~r. Here, we assume that

1. there is no interaction and collision among the bosons as they fly apart;

2. the bosons move at constant speed during their entire flight.

In the limit of infinite tf , the time-of-flight image captures

〈nf (~r)〉 =

(
m

~tf

)3 ∣∣∣∣w̃( m

~tf
~r

)∣∣∣∣2 S(~k) . (A.10)

To start with the correction due to dynamics, we consider the time evolution of
the time-dependent wannier wavepacket that orginates from site j

Wj(~r, tf ) =

(
m

~tf

)3/2

w̃

(
m

~tf
(~r − ~rj)

)
exp

(
−iεktf

~

)
, (A.11)

where

εk =
~2k2

2m
=

~2

2m

(
m

~tf

)2

(~r − ~rj)2 . (A.12)

Ignoring the initial-site dependence on the wannier enveloped function, the time-
of-flight image captures

〈nf (~r)〉 ≈
(
m

~tf

)3 ∣∣∣∣w̃( m

~tf
~r

)∣∣∣∣2∑
i,j

〈b̂†i b̂j〉

× exp

(
− i
~
~2

2m

(
m

~tf

)2

(~r − ~ri)2tf

)

× exp

(
i

~
~2

2m

(
m

~tf

)2

(~r − ~rj)2tf

)
(A.13)
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A.3 Obtaining time-of-flight image

at finite tf , therefore arriving at the final expression

〈nf (~k)〉 ≈ |w̃(~k)|2
∑
i,j

〈b̂†i b̂j〉 ei
~k·(~ri−~rj)−iγf (r2i−r2j ) . (4.6)

The time-of-flight phase γf can be easily evaluated in Python, for example:
>>> import pyalps.dwa
>>> pyalps.dwa.tofPhase(time_of_flight=15.5, wavelength

=[843,765,765], mass=86.99)
[0.007850080468935228, 0.006464602556863682, 0.006464602556863682]

A.3 Obtaining time-of-flight image
This section illustrates how one can easily obtain the time-of-flight images, say
figure 4.1 for example, using the Python interface.

import numpy;
import numpy.fft;
import pyalps;
import pyalps.dwa;
import matplotlib.pyplot;
from mpl_toolkits.mplot3d.axes3d import Axes3D;

resultFile = pyalps.getResultFiles()[0];
L = int(pyalps.getParameters(resultFile)[0][’L’]);
green_tof = pyalps.getMeasurements(resultFile, observable=’

Green Function:TOF’)[0][’mean’][’value’].reshape([L,L,L]);
momentum_density = numpy.fft.fftn(green_tof).real;

V0 = numpy.array([8.8, 8., 8.]);
wlen = numpy.array([765., 843., 843.]);
a = 101;
m = 86.99;
band = pyalps.dwa.bandstructure(V0, wlen, a, m, L);

q_z = numpy.array(band.q(2));
wk2_z = numpy.array(band.wk2(2));
wk2_z = numpy.array([q_z, wk2_z]).transpose();
wk2_z0= wk2_z[wk2_z[:,0] == 0.][0][1];
wk2_z = numpy.transpose(wk2_z[wk2_z[:,1]/wk2_z0 > 1e−4]);
q_z = wk2_z[0]
wk2_z = wk2_z[1]

momentum_density = numpy.tile(momentum_density, reps=(1,1,2*((q_z[
q_z[:] >= 0].size / L)+1)));
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Implementing quantitative simulations

dummy = numpy.zeros(momentum_density.shape[2]);
dummy[dummy.size/2:dummy.size/2 + q_z[q_z[:] >= 0].size] = wk2_z[

q_z[:] >= 0]
dummy[dummy.size/2−q_z[q_z[:] < 0].size:dummy.size/2] = wk2_z[q_z

[:] < 0]

momentum_density = numpy.tensordot(momentum_density, dummy, axes
=([2],[0]))

momentum_density = numpy.tile(momentum_density, reps=(4,4));

q_x = numpy.array(band.q(0));
wk2_x = numpy.array(band.wk2(0));
wk2_x = wk2_x[(q_x[:] >= −2.)*(q_x[:] < 2.)];
q_x = q_x[(q_x[:] >= −2.)*(q_x[:] < 2.)]

q_y = numpy.array(band.q(1));
wk2_y = numpy.array(band.wk2(1));
wk2_y = wk2_y[(q_y[:] >= −2.)*(q_y[:] < 2.)];
q_y = q_y[(q_y[:] >= −2.)*(q_y[:] < 2.)]

wk2 = numpy.outer(wk2_x, wk2_y);

q_x = numpy.array([q_x] * wk2.shape[1], float);
q_y = numpy.array([q_y] * wk2.shape[0], float).transpose();
tof_image = wk2 * momentum_density;

mag = L/10;
q_x = q_x[0:q_x.shape[0]:mag, 0:q_x.shape[1]:mag];
q_y = q_y[0:q_y.shape[0]:mag, 0:q_y.shape[1]:mag];
tof_image = tof_image[0:tof_image.shape[0]:mag, 0:tof_image.shape

[1]:mag] * mag * mag

fig = matplotlib.pyplot.figure();
ax = fig.add_subplot(1, 1, 1, projection=’3d’)
surf = ax.plot_surface( q_y, q_x, tof_image,

rstride=1, cstride=1, cmap=matplotlib.cm.
coolwarm, linewidth=0, antialiased=
False)

fig.colorbar(surf, shrink=0.5, aspect=10);
fig.show();

Further detailed information can be found in reference [61].
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A.4 Obtaining density profile

A.4 Obtaining density profile
This section illustrates how one can easily obtain the density profiles, say figure
4.2 for example, using the Python interface.

import numpy;
import pyalps;
import pyalps.dwa;
import matplotlib.pyplot;
from mpl_toolkits.mplot3d.axes3d import Axes3D;

resultFile = pyalps.getResultFiles()[0];
L = int(pyalps.getParameters(resultFile)[0][’L’]);
density = pyalps.getMeasurements(resultFile, observable=’Local

Density’)[0][’mean’][’value’].reshape([L,L,L]);
cross_section_density = density[:,:,L/2];
column_integrated_density = numpy.sum(density, axis=2);
x = numpy.array([range(L)] * L, float) − (L−1)/2.;
y = numpy.transpose(x);

# Plotting cross sectional density profile
fig1 = matplotlib.pyplot.figure();
ax = fig1.add_subplot(1, 1, 1, projection=’3d’)
surf = ax.plot_surface( x, y, cross_section_density,

rstride=1, cstride=1, cmap=matplotlib.cm.
coolwarm, linewidth=0, antialiased=
False)

fig1.colorbar(surf, shrink=0.5, aspect=10);
fig1.show();

# Plotting column integrated density profile
fig2 = matplotlib.pyplot.figure();
ax = fig2.add_subplot(1, 1, 1, projection=’3d’)
surf = ax.plot_surface( x, y, column_integrated_density,

rstride=1, cstride=1, cmap=matplotlib.cm.
coolwarm, linewidth=0, antialiased=
False)

fig2.colorbar(surf, shrink=0.5, aspect=10);
fig2.show();

Further detailed information can be found in reference [61].
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Implementing quantitative simulations

A.5 Fixing 〈N〉 by tuning chemical potential
In this section, we shall work through part of the example of quantifying the error
budget due to a ±5% fluctuation in lattice strength V0x to illustrate how easily
the chemical potential can be conviently tuned in the Python interface. (See table
4.1.)

A.5.1 Initial simulations

The first step is to scan a certain range of chemical potentials µ in the initial
simulations.

The following prepares the parameter files for the initial simulations in the Python
interface:

import numpy;
import pyalps;
import pyalps.dwa;

tof_phase = pyalps.dwa.tofPhase(time_of_flight=15.5, wavelength
=[765,843,843], mass=86.99)

ps = [];
for ratio in [0.96, 0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.03,

1.04]:
V0 = numpy.array([ratio*8.805, 8. , 8. ]);
wlen = numpy.array([765., 843., 843.]);
a = 101;
m = 86.99;
L = 160;

band = pyalps.dwa.bandstructure(V0, wlen, a, m, L);
p = {};
p.update({’ratio_V0x’ : ratio , ’U’ : band.Ut()[2] , ’tx_t’ :

band.t()[0]/band.t()[2]})
ps.append(p);

params=[]
for p in ps:

for ratio in [0.8, 0.82, 0.84, 0.88, 0.9, 0.92, 0.94, 0.96,
0.98, 1.00, 1.02, 1.04, 1.06, 1.08, 1.10, 1.12, 1.14, 1.16,
1.18, 1.2]:

params.append(
{ ’LATTICE’ : ’inhomogeneous simple cubic lattice’
, ’MODEL’ : ’boson Hubbard’
, ’L’ : 160
, ’Nmax’ : 20
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A.5 Fixing 〈N〉 by tuning chemical potential

, ’ratio_V0x’ : p[’ratio_V0x’]
, ’t’ : 1.
, ’tx_t’ : p[’tx_t’]
, ’U’ : p[’U’]
, ’T’ : 1.
, ’mu_homogeneous’ : ratio*4.0265
, ’mu’ : ’mu_homogeneous − (0.0073752*(x−(L−1)

/2.)*(x−(L−1)/2.) + 0.0036849*(y−(L−1)/2.)*(y−(L−1)/2.)
+ 0.0039068155*(z−(L−1)/2.)*(z−(L−1)/2.))’

, ’tof_phase’ : str(tof_phase)
, ’SWEEPS’ : 100000
, ’SKIP’ : 100
}

)

h5_infiles = pyalps.writeInputH5Files("errorbudget.V0",params);

The next step is thermalization, i.e.
for taskfile in h5_infiles:

pyalps.dwa.recursiveRun(
"pyalps.runApplication(’dwa’, taskfile)" ,
cmd_lang = ’python’ ,
follow_up_script = "pyalps.dwa.extract_worldlines(infile=

pyalps.input2output(taskfile), outfile=taskfile)" ,
break_if = "pyalps.dwa.thermalized(pyalps.input2output(

taskfile), ’Total Particle Number’, simplified=True)" ,
write_status = "pyalps.dwa.write_status(pyalps.input2output(

taskfile), ’Thermalizing’)" ,
loc = locals()

);

followed by convergence of 〈N〉, i.e.
for taskfile in h5_infiles:

pyalps.dwa.recursiveRun(
"pyalps.runApplication(’dwa’, pyalps.input2output(taskfile))"

,
cmd_lang = ’python’ ,
break_if = "pyalps.dwa.converged(pyalps.input2output(taskfile)

, ’Total Particle Number’, simplified=True)" ,
write_status = "pyalps.dwa.write_status(pyalps.input2output(

taskfile), ’Converging’)" ,
loc = locals()

);
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A.5.2 Tuning chemical potential

Next, we prepare the new parameter files for a new interpolated value of chemical
potentials:

resultFiles = pyalps.getResultFiles(prefix=’errorbudget.V0’);
data = pyalps.loadMeasurements(resultFiles, ’Total Particle Number

’);
params = pyalps.paramsAtFixedY(data, x=’mu_homogeneous’, y=’Total

Particle Number’, foreach=[’ratio_V0x’], fixedY=280000);

h5_infiles = pyalps.writeInputH5Files("errorbudget.V0.1",params);

and we perform the new simulations similar to before. This process is repeated
until one is satisfied with the accuray of the interpolated chemical potential.

A.5.3 Turning on measurements

After one is satisfied with the correct chemical potential, the measurements for
density profile and green function can be turned on

for h5_infile in h5_infiles:
pyalps.dwa.switchParameter(h5_infile, ’MEASURE[Local Density]’,

1);
pyalps.dwa.switchParameter(h5_infile, ’MEASURE[Green Function]’,

1);

for the simulations to run and collect statistics till satisfaction.

Further detailed information can be found in reference [61].
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Appendix B

Energy functional for repulsive
Fermi gas

B.1 Energy functional
The objective is to determine the energy functional, or equation of state, of the
homogeneous Fermi gas at zero temperature by Fixed-Node Diffusion Monte Carlo
(FN-DMC) method. This technique has been popularly employed in several stud-
ies of the ground-state properties of resonantly interacting Fermi gases with bal-
anced [62, 63] as well as imbalanced [64, 65, 66] populations of the two components.
Despite the fact that – to circumvent the sign problem – one has to introduce the
fixed-node constraint, meaning that the ground-state wave function is forced to
have the same nodal surface as a trial wave function, FN-DMC has proven to be
extremely accurate. It provides a rigorous upper bound for the ground-state en-
ergy, which is exact if the nodes of the trial wave function coincide with those of
the exact ground state. Predictions for the ground-state energies obtained with
this technique have been benchmarked against experimental results for the low
temperature equations of state of both normal and superfluid atomic gases on the
attractive branch of Feshbach resonances [67, 68]. In this appendix, we will extend
the same technique to the repulsive branch [52].

Other than the fixed node approximation for interacting fermions, diffusion Monte
Carlo is numerically exact with any suitable choice of initial trial wavefunction
ψT (r↑1, · · · , r

↑
N↑
, r↓1, · · · , r

↓
N↓

) (or simply ψT ({r↑i }, {r
↓
i′}) for N↑ spin-up and N↓ spin-

down fermions [69]. We adopt the Jastrow-Slater form [70]

ψT ({r↑i }, {r
↓
i′}) =

∏
i,i′

f(|r↑i − r↓i′|) det(φ↑j(r
↑
i )) det(φ↓j′(r

↓
i′)) ; (B.1)
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B.1 Energy functional

where the positive-definite Jastrow correlation term f(r) between unlike spin
fermions is obtained from the solution of the two-body scattering problem in free
space

− ~2

m

∂2

∂r2
f(r) + Vint(r)f(r) = εintf(r) (B.2)

(0 < r < L). Here, Vint(r) is chosen to be the hardcore scattering potential
that reproduces the s-wave scattering length as at long range, and f(r) is chosen
correspondingly with the lowest positive eigenvalue εint as well as its derivative
f ′(r = L/2) = 0. φ↑j(r

↑
i ) and φ↓j′(r

↓
i′) are plane wave orbitals.
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Figure B.1: (color on-line). Energy per volume as a function of the polarization for
different values of the interaction parameter kFa. Squares are Monte Carlo data,
solid (black) lines the global energy function equation (B.5), dashed and dot-dashed
lines represent the low-P and large-P expansions, equations (B.8) and (B.11),
respectively.

The ground-state energy per volume of the repulsive Fermi gas ε = ε(kFa, P ) is a
functional in terms of the interaction parameter

kFa = (3π2ρ)1/3a (B.3)

(where ρ = ρ↑ + ρ↓ is the total density), and the polarization

P =
ρ↑ − ρ↓
ρ↑ + ρ↓

. (B.4)

The energy density ε(kFa, P ) interpolates between its small polarization limit
ε<(kFa, P ) and its large polarization limit ε>(kFa, P ), i.e.

ε(kFa, P ) =
(

1− fdamp(P )
)
ε<(kFa, P ) +

(
fdamp(P )

)
ε>(kFa, P ) . (B.5)
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through a damping function

fdamp(P ) =
1

2

(
1 + tanh

[
2πCdamp1 (P − Cdamp2)

])
(B.6)

such that the coefficient Cdamp1 = 1.8 determines the steepness, and Cdamp2 = 0.5 is
the center of the transition region. Figure B.1 illustrates the energy density (B.5),
the small and large polarization limits. All raw quantum Monte Carlo data are re-
ported in publication [52]. Finally, the hartree-exchange-correlation energy density
is obtained by subracting the Thomas-Fermi components 5.8, i.e.

εHXC(kFa, P ) = ε(kFa, P )− 3

5
ρ↑EF↑ −

3

5
ρ↓EF↓ . (B.7)

B.2 Analytic behavior at polarization limits
At small population imbalance, the energy density is quadratic in the polarization,
i.e.

ε<(kFa, P ) =
3

5
ρEF

[
ε0 (kFa) +

5

9
P 2χ−1 (kFa)

]
. (B.8)

In units of 3
5
ρEF = 3

5
ρ
~2k2F
2m

, the energy of unpolarized Fermi gas is expressed in a
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Figure B.2: (color on-line). Energy per volume (circles, left axis) and inverse
magnetic susceptibility (squares, right axis) of the unpolarized Fermi gas. Units
are the ideal Fermi gas values, 3/5ρEF and χ0 = 3ρ/(2EF ), respectively. Solid
lines are the fitting functions (B.9) in red and (B.10) in green, while the dashed
lines correspond to second order perturbation theory.

Taylor expansion of (kFa) as

ε0(kFa) = 1 + CE1(kFa) + CE2(kFa)2 + CE3(kFa)3 + CE4(kFa)4 , (B.9)
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B.2 Analytic behavior at polarization limits

and likewise for the inverse of the magnetic susceptibility

χ−1 (kFa) = 1− Cχ1kFa− Cχ2(kFa)2 − Cχ3 (kFa)3 . (B.10)

The coefficients CE1 = 0.3536, CE2 = 0.1855, Cχ1 = 0.6366 and Cχ2 = 0.2911 have
been determined using second order perturbation theory [71, 72, 73, 74, 75], while
we obtain CE3 = 0.307(7), CE4 = −0.115(8) and Cχ3 = 0.56(1) from a best-fit
to the Monte Carlo results with zero or small population imbalance (in the range
kFa ≤ 1 and P ≤ 0.5). Figure The functions ε0(kFa) and χ−1(kFa) are shown in
figure B.2.

At large population imbalance the behavior of a normal Fermi gas is well de-
scribed by the Landau-Pomeranchuk hamiltonian [65, 76, 70]. In this approach,
the minority component is regarded as a gas of weakly interacting quasiparticles,
called Fermi polarons. In this limit, the energy density
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Figure B.3: (color on-line). Chemical potential at zero concentration (circles, left
axis) and effective mass (squares, right axis) of the repulsive polaron. Units are
3/5EF↑ and bare atomic mass, respectively. Solid lines are the fitting functions
(B.14) in red and (B.15) in green. The dashed line is the chemical potential in
second order perturbation theory.

e>(kF↑a, x) =
3

5
ρ↑EF↑

[
1 + A(kF↑a)x+ F (kF↑a)x2 +

x5/3

m∗(kF↑a)

]
(B.11)

is characterized by the interaction parameter

kF↑a = (6π2ρ↑)
1/3a (B.12)
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of the majority component, and the concentration

x =
1− P
1 + P

(B.13)

of the minority compoent. In units of 3
5
ρ↑EF↑, A(kF↑a) represents the polaron

chemical potential at zero concentration, i.e.

A(kF↑a) =
5

3

[
CA1(kF↑a) + CA2 (kF↑a)2 + CA3 (kF↑a)3

]
. (B.14)

Second order perturbation theory [76, 77, 78] gives the first two coefficients CA1 =
0.4244 and CA2 = 0.2026, while CA3 = 0.105(2) results from a best-fit to Monte
Carlo data for the energy of a single spin-down impurity immersed in the Fermi
sea of spin-up (majority component) particles. The polaron effective mass m∗ is
extracted from the dispersion relation of an impurity with finite momentum. We
parametrize the interaction parameter dependence of this effective mass (in units
of the bare atomic mass) as

m∗(kF↑a) = 1 + Cm∗1(kF↑a)Cm∗2 (B.15)

where Cm∗1 = 0.0807(50) and Cm∗2 = 1.59(15). The functions A(kF↑a) and
m∗(kF↑a) are shown in fig. B.3. Parametrizing

F (kF↑a) = CF (kF↑a)2 , (B.16)

the coefficient CF = 0.419(4) is obtained from fitting the Monte Carlo data for a
highly imbalanced Fermi gas (x . 0.5) via inserting equation B.14 and B.15 into
the Landau-Pomeranchuck functional.

To facilitate the implementation of the functional, we summarize the values of
all of the coefficients in the following table.

Cdamp1 = 1.8 Cχ1 = 0.6366 Cm∗1 = 0.0807
Cdamp2 = 0.5 Cχ2 = 0.2911 Cm∗2 = 1.59
CE1 = 0.3536 Cχ3 = 0.56 CF = 0.419
CE2 = 0.1855 CA1 = 0.4244
CE3 = 0.307 CA2 = 0.2026
CE4 = −0.115 CA3 = 0.105
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