

Dissertation ETH Number 21384

Numerical simulations of bosons and fermions in three dimensional optical lattices

Ping Nang MA Ph.D. oral examination (Sept. 27, 2013)

Main Collaborators: Prof. Lode POLLET (LMU, Munich), Dr. Sebastiano PILATI (ICTP, Italy)

Supervisor: Prof. Matthias TROYER

Contents

1. Optical lattice - introduction

2. Magnetism in optical lattices

- **Density Functional Theory**
- Reference: P. N. Ma, S. Pilati, M. Troyer, and X. Dai, Density functional theory for atomic Fermi gases, Nature Phys. 8, 601 (2012)

3. Thermometry in optical lattices

- **Fluctuation-dissipation thermometry**
- Wing thermometry

Reference: P. N. Ma, L. Pollet, and M. Troyer, Measuring the equation of state of trapped ultracold bosonic systems in an optical lattice with in-situ density imaging, Phys. Rev. A. **82**, 033627 (2010)

Directed worm algorithm (QMC) - optional Conclusion/Outlook

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Optical lattices

-- setup by 3 orthogonal pairs of laser beams.

Cartoon illustration

 $V(\mathbf{x}) = \sum_{x^i = x, y, z} V_0 \, \sin^2(kx^i)$

Lattice strength: V₀ Lattice separation: $d = \frac{\lambda}{2}$. Lattice wavevector: $k = \frac{2\pi}{\lambda} = \frac{\pi}{d}$ s-wave scattering length: a

-- setup by 3 orthogonal pairs of laser beams.

Immanuel Bloch's laboratory, Max Planck Institute

September 27, 2013

Ping Nang MA - pingnang@phys.ethz.ch

Optical lattices

Thursday, September 26, 13

Ping Nang MA - pingnang@phys.ethz.ch

Optical lattices

For deep lattices, or large V_0 :

I. bosons in an optical lattice

$$\hat{H} = -t \sum_{\langle i,j \rangle} \hat{b}_i^{\dagger} \hat{b}_j + \frac{U}{2} \sum_i n_i (n_i - 1) - \sum_i (\mu - V_T \mathbf{x}_i^2) n_i$$

(boson Hubbard model)

2. fermions in an optical lattice

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \sum_{i} (\mu - V_T \mathbf{x}_i^2) n_i$$

(Hubbard model)

hopping `, onsite interaction

Easy and convenient conversion within ALPS Python:

>>> band

		Optical lattice:
<pre>>>> import numpy; >>> import pyalps.dwa; >>> >>> V0 = numpy.array([8.805, 8. , 8.]); #lattice stre >>> wlen = numpy.array([765., 843., 843.]); #laser wavele >>> a = 101; #s-wave scattering length [bohr radius]</pre>	ength [Er] ength [nm] s]	V0 [Er] = 8.805 8 8 lamda [nm] = 765 843 843 Er2nK = 188.086 154.89 154.89 L = 160 g = 5.51132
>>> m = 86.99; #mass [a.m.u.] >>> L = 160; #lattice of size L^3 >>>		Band structure: ====================================
<pre>>>> band = pyalps.dwa.bandstructure(V0, wlen, a, m, L); >>></pre>		U [nK] : 38.7027

Bosons in an optical lattice

Quantitative validation:

I. on time-of-flight (tof) images:

$V_0/E_R = 8$, U/t = 8.11, N = 280,000

2. on density profiles:

Fermions in an optical lattice

$$\hat{H} = -t \sum_{\langle i,j \rangle,\sigma} \hat{c}_{i\sigma}^{\dagger} \hat{c}_{j\sigma} + U \sum_{i} n_{i\uparrow} n_{i\downarrow} - \sum_{i} (\mu - V_T \mathbf{x}_i^2) n_i$$

Quantum Monte Carlo -- negative sign problem M.Troyer, U-I, Weise, PRL 94, 170201 (2005)

$$\begin{split} \langle A \rangle &= \frac{\sum_{c} A(c) p(c)}{\sum_{c} p(c)} \\ &= \frac{\sum_{c} A(c) s(c) |p(c)| / \sum_{c} |p(c)|}{\sum_{c} s(c) |p(c)| / \sum_{c} |p(c)|} \equiv \frac{\langle As \rangle'}{\langle s \rangle'} \\ \frac{\Delta s}{\langle s \rangle} &= \frac{\sqrt{(\langle s^2 \rangle - \langle s \rangle^2) / M}}{\langle s \rangle} = \frac{\sqrt{1 - \langle s \rangle^2}}{\sqrt{M} \langle s \rangle} \sim \frac{e^{\beta N \Delta f}}{\sqrt{M}} \end{split}$$

~ scales exponentially with 1) inverse temperature β , and 2) system size N.

Therefore, phase diagram for fermions is not entirely clear in general

At half-filling, the Hubbard model exhibits antiferromagnetic ground state.

Thursday, September 26, 13

TH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

September 27, 2013

Ping Nang MA - pingnang@phys.ethz.ch

Magnetism in (ultracold) gases

Stoner ferromagnetism:

$$\hat{H} = \sum_{\mathbf{k},\sigma} \epsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}} + \frac{1}{2} \frac{U}{N} \sum_{\substack{\mathbf{k}_{1}\mathbf{k}_{2}\\\mathbf{q}\neq 0}} \hat{c}_{\mathbf{k}_{1}+\mathbf{q}\uparrow}^{\dagger} \hat{c}_{\mathbf{k}_{2}-\mathbf{q}\downarrow}^{\dagger} \hat{c}_{\mathbf{k}_{2}\downarrow} \hat{c}_{\mathbf{k}_{1}\uparrow}$$

-- first observed experimentally in an ultracold ⁶Li gaseous cloud in 2009.

G-B. Jo, et al, Itinerant ferromagnetism in a Fermi gas of ultracold atoms, Science **325**, 5947 (2009).

-- phase diagram

September 27, 2013

Magnetism in optical lattices

Ping Nang MA - pingnang@phys.ethz.ch

 $V_0[E_R]$

Thursday, September 26, 13

KS-LSDA

 $V_0 = 2.0 E_R$

Magnetism in optical lattices

0.8

0.6

1.5

ц

KS-LSDA

1.5

 $V_0 = 0.5 E_R$

0.1

a/d

KS-DFT:

FIH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

$$\left[\frac{1}{\pi^2}\left(-i\nabla + 2\pi\mathbf{k}\right)^2 + V_{\sigma}^{\text{eff}}\left(\rho_{\uparrow},\rho_{\downarrow};\mathbf{r}\right)\right] u_{n\mathbf{k}}^{\sigma_{0.5}}$$

simple cubic (sc) lattice:

$$\mathbf{b}_1 = \hat{\mathbf{x}} \ , \ \mathbf{b}_2 = \hat{\mathbf{y}} \ , \ \mathbf{b}_3 = \hat{\mathbf{z}}$$

Notation	k-point
Γ	(0, 0, 0)
Х	(1/2, 0, 0)
М	(1/2, 1/2, 0)
R	(1/2, 1/2, 1/2)

Conclusion:

Band structure effects stablizes ferromagnetism.

0.8

0.6

1.5

n

September 27, 2013

Ping Nang MA - pingnang@phys.ethz.ch

PhD oral examination, ETH Zurich

KS-LSDA

 $= 4.0 E_{R}$

0.8

0.6

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Magnetism in optical lattices

Antiferromagnetism:

Х (1/2, 0, 0)W (1/4, 1/2, 0)in the limit towards $\overline{(1/4, 1/4, 1/4, 1/4}$ L Hubbard model $V_0/E_R = 4$, a/d = 8%: 5 0.5 $V_0 \; [E_R]$ E [E_R] 3 0 -0.5 (due to symmetry reduction) $\rho d^3 = 1$ $\Delta_{\rm SDW}$ 0 0.2 0.1 0.3 Х W Γ L a/d

- -- qualitatively correct (AFM ground state) towards the Hubbard limit.
- -- AFM phase can be deduced indirectly by probing Δ_{SDW}
- -- Cooling towards GS is an experimental challenge!

fcc lattice:

k-point

(0, 0, 0)

Notation

Γ

Magnetism in optical lattices

Density-of-states:

September 27, 2013

Ping Nang MA - <u>pingnang@phys.eth</u>z

NM

PhD oral examination, ETH Zurich

Thermometry

mercury thermometer

In-situ density images:

non-destructive measurement

destructive measurement

Fluorescence experiment: a single measurement of atom distribution of bosons in an optical lattice. Single-site resolution

We can then collect a timeseries of density measurements, thereby able to evaluate density-related observables, for instance:

- I. average density , i.e. <n(r)>
- 2. density correlations, i.e. $\langle n(r)n(r') \rangle \langle n(r) \rangle \langle n(r') \rangle$

Fluctuation-Dissipation Thermometry

 $(V(\mathbf{r}) = \frac{1}{2} M \omega^2 \mathbf{r}^2)$

Fluctuation-dissipation theorem:

$$\frac{\partial \langle n(\vec{r}) \rangle}{\partial \mu} = \beta \Big[\langle n(\vec{r})N \rangle - \langle n(\vec{r}) \rangle \langle N \rangle \Big]$$

Local Density Approximation

$$n(\mathbf{r};T,\mu) = n_o(\mu(\mathbf{r}),T)$$
 ,

(Thereby, we have
$$\frac{d\mu(\mathbf{r})}{dr} = -M\omega^2 r$$
 and $\frac{\delta\langle n(\mathbf{r})\rangle}{\delta\mu(\mathbf{r})} = -\frac{1}{M\omega^2 r} \frac{\partial\langle n(\mathbf{r})\rangle}{\partial r}$.)

Universal Thermometry:

$$\frac{k_B}{M\omega^2 r} \frac{\partial \langle n(\vec{r}) \rangle}{\partial r} \times T = \langle n(\vec{r})N \rangle - \langle n(\vec{r}) \rangle \langle N \rangle$$

or:
$$L(r) \times T = R(r)$$

Q. Zhou, T-L. Ho, Universal thermometry for quantum simulation, Phys. Rev. Lett 106, 225301 (2011)

Uncontrolled statistical noise!

September 27, 2013

Thursday, September 26, 13

Ping Nang MA - pingnang@phys.ethz.ch

Fluctuation-Dissipation Thermometry

Window-sizing:

$$R_{\xi}(\boldsymbol{\rho}) = \int d\boldsymbol{\rho}' \{ \langle n(\boldsymbol{\rho}) n(\boldsymbol{\rho}') \rangle - \langle n(\boldsymbol{\rho}) \rangle \langle n(\boldsymbol{\rho}') \rangle \} \theta (\xi) - |\boldsymbol{\rho} - \boldsymbol{\rho}'| \}$$

$$L(\rho) = -\frac{1}{M\omega^2 \rho} \frac{\partial \langle n(\rho) \rangle}{\partial \rho}$$

- -- density-density correlation length
- -- unknown in reality

-- yet can be "obtained" by <u>slowly</u> <u>enlarging the "window size"</u>

where the 3D density is integrated along the line-of-sight:

Graphical illustration of $\xi = 2$

N /

Systematic error arises due to lack of correlations

September 27, 2013

Ping Nang MA - pingnang@phys.ethz.ch

	Number of shots	
System	$\xi = 3$	$\xi = \infty$
U/t = 10, T/t = 1	20	<i>O</i> (10 ⁴)
U/t = 10, T/t = 3	14	$O(10^4)$
U/t = 50, T/t = 1	21	$O(10^4)$
U/t = 50, T/t = 3	12	$O(10^4)$

Number of independent shots required to estimate the temperature within 5% accuracy

-- The simple trick of "window-sizing" leads to orders-of-magnitude improvement! -- Statistical noise is drastically reduced.

-- Fluctuation-dissipation thermometry will remain a feasible tool so long as the <u>density-density correlation length remains short</u> !

At a lower temperature, a larger window is needed due to increasing correlation length :

Lower Resolution

U/t = 10, T/t = 1.0

U/t = 50, T/t = 1.0

September 27, 2013

Ping Nang MA <u>- pingnang@phys.ethz.ch</u>

Fluorescence experiments can only detect parity densities

U/t = 10, T/t = 1.0

Can only trust mesurements with densities <~ 0.4 ...

U/t = 50, T/t = 1.0

I

- normal measurements
- parity measurements

September 27, 2013

FIH

Ping Nang MA - pingnang@phys.ethz.ch

Wing Thermometry

- To fit the wings of 2D cross sectional density profile against HTE2 (or better) density.
- Expand the partition function exact up to $(\beta t)^2$

HTEO:	$(-\beta t)^2$ HTE2 :
$\langle n_{i}^{(0)} \rangle = \frac{1}{(0)} \sum n_{i} e^{-\beta (D_{i} - \mu_{i} n_{i})}$	$\langle n_i \rangle = \langle n_i^{(j)} \rangle + \sum_{\langle i,j \rangle} \overline{Z_i^{(0)} Z_j^{(0)}}$
$Z_{i}^{(0)} \qquad \sum_{n_{i}} \gamma^{(0)} \sum_{n_{i}} \gamma^{(0)} \sum_{n_{i}} \gamma^{(0)} \sum_{n_{i}} \gamma^{(0)} \sum_{n_{i}} \gamma^{(0)} \gamma^{(0)} \sum_{n_{i}} \gamma^{(0)} \gamma^$	$\times \left[\sum_{\{n_i,n_i\}}^{(-,+)} \left(\delta n_i + \frac{\chi_{ij}^{\delta}}{\Gamma_{ij}^{\delta}} \right) n_i n_j^{\delta} e^{-\beta (D_i + D_j - \mu_i n_i - \mu_j n_j)} \Gamma_{ij}^{\delta} \right]$
$Z_i^{(n)} = \sum_{\{n_i\}} e^{-i(n+1)i}$	$+ \sum_{i=1}^{(+,-)} \left(\delta n_i - \frac{\chi_{ji}^{\delta}}{\Gamma^{\delta}} \right) n_i^{\delta} n_j e^{-\beta (D_i + D_j - \mu_i n_i - \mu_j n_j)} \Gamma_{ji}^{\delta} \right]$
$D_i = \frac{0}{2}n_i(n_i - 1)$	$\{n_{i},n_{j}\} \left(\begin{array}{c} 1 \\ ji \end{array} \right)$ $\chi^{\delta} = \frac{e^{\beta \gamma_{ij}^{\delta}}}{1 - e^{\beta \left(\gamma_{ij}^{\delta} + \gamma_{ji}\right)}}$
only valid deep in the normal phase	$\Gamma_{ij}^{\delta} = \frac{1 - e^{\beta \gamma_{ij}^{\delta}}}{\left(\beta \gamma_{ij}^{\delta}\right) \left(\beta \gamma_{ji}\right)} - \frac{1 - e^{\beta \left(\gamma_{ij}^{\delta} + \gamma_{ji}\right)}}{\left(\beta \gamma_{ij}^{\delta} + \beta \gamma_{ji}\right) \left(\beta \gamma_{ji}\right)} - \frac{1 - e^{\beta \left(\gamma_{ij}^{\delta} + \gamma_{ji}\right)}}{\left(\beta \gamma_{ij}^{\delta} - \beta \gamma_{ji}\right)} - \frac{1 - e^{\beta \left(\gamma_{ij}^{\delta} + \gamma_{ji}\right)}}{\left(\beta \gamma_{ij}^{\delta} - \beta \gamma_{ji}\right)} - \frac{1 - e^{\beta \left(\gamma_{ij}^{\delta} + \beta \gamma_{ji}\right)} \left(\beta \gamma_{ij}^{\delta} - \beta \gamma_{ji}\right)}{\left(\beta \gamma_{ij}^{\delta} - \beta \gamma_{ji}\right)}$
	$\left(eta\gamma_{ij}^{\delta} ight)^2(eta\gamma_{ji})^2$,

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Thursday, September 26, 13

Wing Thermometry

- -- Should the entire system be in the normal phase, no more than **a single measurement** is needed to estimate the temperature accurately!
- -- Whenever possible, HTE2 is the choice of preference for thermometry.

September 27, 2013

Wing Thermometry

- HTE0 works poorly.
- HTE2 captures the <u>entire normal phase</u>.
- HTE2 works better with larger normal region.

Fitting density "wings" to HTE2

• The wings of 2D cross sectional density profile is fitted to HTE2 density.

Feynmann perturbation (boson Hubbard model):

$$Z = \sum_{m=0}^{\infty} \sum_{i_1 \cdots i_m} e^{-\beta \epsilon_1} \int_0^\beta d\tau_1 \cdots \int_0^{\tau_{m-1}} d\tau_m \left(e^{-\tau_1 \epsilon_1} V_{i_1 i_2} e^{\tau_1 \epsilon_2} \right) \cdots \left(e^{-\tau_m \epsilon_m} V_{i_m i_1} e^{\tau_m \epsilon_1} \right)$$

or simply:
$$Z = \sum_{\mathcal{C}} Z(\mathcal{C}) \qquad \text{In this e}$$

$$\hat{H}_{0} = \frac{U}{2} \sum_{i} n_{i}(n_{i}-1) - \sum_{i} \mu_{i}n_{i}$$
$$\hat{V} = t \sum_{\langle i,j \rangle} \hat{b}_{i}^{\dagger} \hat{b}_{j} ,$$
$$\hat{H}_{0}|i\rangle = \epsilon_{i}|i\rangle$$
$$V_{ij} = \langle i|\hat{V}|j\rangle$$

In this example:

 $\begin{aligned} |i_1\rangle &= |0, 1, 0, 1, 3, 0, 1, 0, 2, 0\rangle \\ |i_2\rangle &= |0, 0, 1, 1, 3, 0, 1, 0, 2, 0\rangle \\ |i_3\rangle &= |0, 0, 1, 1, 3, 0, 0, 1, 2, 0\rangle \\ |i_4\rangle &= |0, 0, 2, 0, 3, 0, 0, 1, 2, 0\rangle \\ |i_5\rangle &= |0, 1, 1, 0, 3, 0, 0, 1, 2, 0\rangle \\ |i_6\rangle &= |0, 1, 1, 0, 3, 0, 1, 0, 2, 0\rangle \\ |i_7\rangle &= |0, 1, 0, 1, 3, 0, 1, 0, 2, 0\rangle \\ |i_8\rangle &= |1, 0, 0, 1, 3, 0, 1, 0, 2, 0\rangle \end{aligned}$

$$V_{i_1i_2} = 1 , V_{i_2i_3} = 1 , V_{i_3i_4} = 1 , V_{i_4i_5} = \sqrt{2}$$

$$V_{i_5i_6} = \sqrt{2} , V_{i_6i_7} = 1 , V_{i_7i_8} = 1 , V_{i_8i_1} = 1$$

 $N : N(\mathcal{C}) = 8$ $E_0 : E_0(\mathcal{C}) = 16$

Worldlines configuration

0

3

5

6

Ping Nang MA - pingnang@phys.ethz.ch

8

L. Pollet, K.V. Houcke, S. M.A. Rombouts, Engineering local optimality in QMC algorithms, J. Comp. Phys. **225/2**, 2249-2266 (2007)

Creation/Annihilation of worms

 $P_{\text{acceptance}} (X \rightarrow Y) = I$ $P_{\text{acceptance}} (Y \rightarrow X) = I$

Move is globally balanced.

L. Pollet, K.V. Houcke, S. M.A. Rombouts, Engineering local optimality in QMC algorithms, J. Comp. Phys. **225/2**, 2249-2266 (2007)

Movement of worms:

2. halted

I. QMC-DWA assigns:

 $\tau_{p'p} \sim Exp(\epsilon_p)$

 \Rightarrow Choose a exponential random number.

2. It either gets halted or not.

3. Memoryless

 $P(X_1 \to X_2) = \epsilon_p e^{-\epsilon_p \tau_{p'p}}$

$$P(X_1 \to X_2) = \int_{\tau_{vp}}^{\infty} \epsilon_p \, e^{-\epsilon_p \tau_{p'p}} \, d\tau_{p'p}$$

 $P(X_1 \to X_2) = e^{-\epsilon_p \tau_{vp}}$

Move is **NOT** globally balanced.

L. Pollet, K.V. Houcke, S. M.A. Rombouts, Engineering local optimality in QMC algorithms, J. Comp. Phys. **225/2**, 2249-2266 (2007)

1) Inserting vertex, 2) deleting vertex, 3) relinking vertex, or 4) worm bounce:

I. QMC-DWA assigns:

$$P(X, Y_1, Y_2 \to X) = \epsilon_{v^-} \langle i_{v^+} | \hat{b}_j^{\dagger} | i_{v^-} \rangle$$

$$P(X, Y_1, Y_2 \to Y_1) = t \langle i_{v^+} | \hat{b}_i^{\dagger} | i_v \rangle \langle i_v | \hat{b}_i \hat{b}_j^{\dagger} | i_{v^-} \rangle$$

$$P(X, Y_1, Y_2 \to Y_2) = t \langle i_{v^+} | \hat{b}_k^{\dagger} | i_v \rangle \langle i_v | \hat{b}_k \hat{b}_j^{\dagger} | i_{v^-} \rangle$$

- 2. The following moves are globally balanced:
 - a. unhalted move + insert vertex/ bounce worm
 - b. halted move + delete/relink vertex/ bounce worm

L. Pollet, K.V. Houcke, S. M.A. Rombouts, Engineering local optimality in QMC algorithms, J. Comp. Phys. **225/2**, 2249-2266 (2007)

Crossing vertex:

 $Z(X) = e^{-\epsilon_p \tau_p} \langle i_v | \hat{b}^{\dagger} | i_p \rangle e^{\epsilon_v \tau_p} \times e^{-\epsilon_v \tau_v} \langle i'_v | \hat{b}^{\dagger} | i_v \rangle e^{\epsilon'_v \tau_v}$ $Z(Y) = e^{-\epsilon_p \tau_v} \langle i_v | \hat{b}^{\dagger} | i_p \rangle e^{\epsilon_v \tau_v} \times e^{-\epsilon_v \tau_v^+} \langle i'_v | \hat{b}^{\dagger} | i_v \rangle e^{\epsilon'_v \tau_v^+}$

$$\frac{Z(Y)}{Z(X)} = \frac{e^{-\epsilon_p \tau_{vp}}}{e^{-\epsilon_v \tau_{vp}}}$$
$$P(X \to Y) = e^{-\epsilon_p \tau_{vp}}$$
$$P(Y \to X) = e^{-\epsilon_v \tau_{vp}}$$

I. It gets halted by like-vertex.

2. It crosses the vertex with acceptance probability I

Move is globally balanced.

ALPS-2.2: QMC-DWA

Implementing QMC-DWA is easy and convenient within ALPS Python!

I. Setup the parameters:

2. Run simulation:

1	ut_file = pyalps.writeInputFiles('parm2b', parms) = pyalps.runApplication('dwa', input_file)
3	Evaluate results:

	<pre>import pyalps data = pyalps.loadMeasurements(pyalps.getResultFiles(prefix='parm2b'), 'Local Density');</pre>
L	and - blatherroranearenthicktherderdererreetherrer brunch 1, moor penerch 1,

Tutorial example: <u>https://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:DWA-02_Density_Profile</u>

September 27, 2013

.

Conclusion/Outlook

1. Magnetism in optical lattices

P. N. Ma, S. Pilati, M. Troyer, and X. Dai, Density functional theory for atomic Fermi gases, Nature Phys. **8**, 601 (2012)

- **Density Functional Theory (for shallow fermionic optical lattices)**
- Magnetism is stabilized by lattice bandstructure effects
- Phase diagram, ferromagnetism/ antiferromagnetism, SDW gap as indirect probe

2. Thermometry in optical lattices

P. N. Ma, L. Pollet, and M. Troyer, Measuring the equation of state of trapped ultracold bosonic systems in an optical lattice with in-situ density imaging , Phys. Rev. A. **82**, 033627 (2010)

- **Fluctuation-dissipation thermometry -- feasible via window sizing**
- **Wing thermometry -- HTE2 valid entirely in normal region.**

3. QMC-DWA implementation in ALPS-2.2

easy and convenient within ALPS Python