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1.3 Optical lattice as a quantum emulator
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1.3.1 Optical lattice

Figure 1.1: Atomic gases in a 2D optical lattice. Counter-propagating laser light
form a standing wave, or an optical lattice, due to wave interference effect. The
lattice intensity is V0, the wavelength � and thus spacing d = �/2. This figure is
modified from its original version, courtesy of M. Yamashita.[26].

The physics of wave interference, generated by counter-propagating laser light,
dictates the presence of a standing wave. [27] The environment of standing waves is
called an optical lattice with intensity V0 and spacing d = �

2
, which is conceptually

illustrated in figure 1.1. For instance, the potential of an isotropic 3D optical
lattice reads

V (x) =
X

xi=x,y,z

V0 sin2(kxi) (1.3)

with wavevector k = 2⇡
�

= ⇡
d

[28]. In addition, quantum particles in an optical
lattice have to be confined by a trapping potential VT (x), otherwise they would
fly apart. In the Greiner experiment, the confinement has been realised with a
tight Gaussian laser focus, as schematically illustrated by figure 1.2. Here, the 3D
optical lattice is radially confined by the trapping envelope
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of waist (or 1/e2-radius) w0 [28]. Particles in current experiments are trapped in
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Optical latticesIntroduction

Figure 1.2: Schematic illustration of the Gaussian confinement of bosons.[28] Top:
A pair of counter-propagating laser beams interfere in the x-direction to form
an enveloped standing wave of intensity V0, with trapping envelope of waist w0.
Bottom: Near the centre, the optical potential is almost uniformly periodic, i.e.
V0 sin

2(kx), with an additional parabolic trapping term V0

w2
0
x2.

the vicinity close to the center of the gaussian trap, therefore effectively confined
by the first order parabolic trapping term. Taking into account also all other
parabolic trapping, the trapping potential can be effectively written as

VT (x) = VTx
2 (1.5)

where VT is the strength of the parabolic trapping.

1.3.2 Single particle in an optical lattice
To better conceptualise the physics, let us hypothetically consider a single parti-
cle of mass m in an optical lattice. Within non-relativisitic regime, its quantum
mechanical nature is captured by the Schrd̈ingier equation in reciprocal space
Ĥ

k

u
k

= E
k

u
k

. [29] Due to the periodicity of the optical lattice, the Bloch Hamil-
tonian is given by

Ĥ =
~2
2m

(�ir+ k)2 + V (x) , (1.6)

where the k-points in reciprocal space take values depending individually on dif-
ferent lattice geometries. Figure 1.3 illustrates the energy band structure E

k

of an
optical lattice, where one could clearly observe the opening of a energy band gap

5

-- Gaussian laser beams induce trapping of atoms.
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~ waist effects are minimal:

4.2 Beyond parabolic trapping

strength U/t, in particularly to the next generation of experiments which involve
a bigger bosonic cloud size whereby the spatial dependence cannot be neglected
anymore.

In this chapter, however, we confine ourselves in the regime of current experiments,
where we neglect the spatial dependence of V0 due to Gaussian beam waist.

4.2.3 Corrections to parabolic trapping
For isotropic optical lattices, the correction to the trapping potential due to waist
effects is

�VT (~r) = V0 � 2V0

w2
0

r2 � V0e
� 2r2

w

2
0 , (4.15)

which has minimal effect on the measurements for current experiments, as illus-
trated in figure 4.3 for instance. However, the waist effects will become more
prominent in future experiments that involve bigger bosonic clouds.

Figure 4.3: Cross-sectional density profiles obtained from QMC-DWA simulations
for 2.8⇥105 bosons trapped in an isotropic optical lattice with interaction strength
U/t = 8.1 at temperature T/t = 1. The lattice strength is taken to be 8.35 Er,
the laser wavelength 843 nm, and the s-wave scattering length 101 aB. Blue:
The trapping potential is assumed to be parabolic, with trapping frequency 10.5
Hz. Red: The trapping potential is corrected according to equation 4.15 with
w0 = 150µm. Waist correction reduces the density at the trap center hn(0, 0, 0)i
by approximately 1%, therefore only spreading out slightly in the wings of the
bosonic cloud which is however statistically irrelevant.

50

Bosons in an optical lattice. QMC-DWA simulation.
U/t = 8.11, T/t = 1.00, N = 280,000, wo = 150μm

(Red) Minimal effect seen due to waist corrections.
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For deep lattices, or large V0:

Introduction

In the presence of parabolic trapping, the trapped boson Hubbard hamiltonian
[38] reads

Ĥ = �t
X

hi,ji

b̂†i b̂j +
U

2

X

i

ni(ni � 1)�
X

i

(µ� VTx
2
i )ni . (1.15)

1.3.4 Fermions in an optical lattice
The hamiltonian for 2-component fermions in an optical lattice is

Ĥ =
X

�=",#

Z

dx  ̂†
�(x)

✓

� ~2
2m

r2 + V (x)

◆

 ̂�(x)

+
1

2

X

�,�0=",#

Z

dx dx0 ̂†
�(x) ̂

†
�0(x0)U(x,x0)  ̂�0(x0) ̂�(x) (1.16)

where the field operators

 ̂(x) =
X

i

w(x� xi) ĉi (1.17)

are expanded in the wannier basis {w(x�xi)} for every site i in the optical lattice
[6]. Here, ĉi and ĉ†i are annihilation and creation operators respectively at site i
that satisfy the following anti-commutation relations

{ĉi, ĉj} = 0 , {ĉ†i , ĉ†j} = 0 , {ĉi, ĉ†j} = �ij . (1.18)

In the limit of deep lattice (large V0), the fermionic homogeneous optical lattice
1.16 can be effectively mapped to the Hubbard model [24]

Ĥ = �t
X

hi,ji,�

ĉ†i� ĉj� + U
X

i

ni"ni# (1.2)

where the summation hi, ji extends over all nearest neighbouring lattice sites, and
� =", #. Unlike the bosonic case, the Hubbard model 1.2, being the simplest corre-
lation model for fermions, remains generally unsolved till today. Only for specific
cases like half-filling (hni = 1) could the Hubbard model 1.2 be solved exact nu-
merically via Quantum Monte Carlo methods [39]. At half-filling towards larger
interaction U/t, the Hubbard model is driven from the Mott insulating phase to
the antiferromagnetic phase with decreasing temperature T/t [39]. Unfortunately,
this cannot yet be confirmed by current experiments, due to tough challenges in
cooling the fermionic optical lattice system beyond the Neel temperature [40].
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A.1 Optical lattice bandstructure

Important bandstructure parameters are the hopping strength

tx = � 1

L

X

k
x

✏k
x

e�i2⇡k
x (A.6)

(likewise for ty and tz), and the onsite interaction strength

U = g

Z

|w(~r)|4 d~r = 4⇡as~2
m

Z

|w(~r)|4 d~r (A.7)

where as is the s-wave scattering length easily tunable via Feshbach resonance
technique. Finally, the Fourier transform of the wannier function is

w̃x(qx) =
1p
L

Z

wx(x)e
�i2⇡q

x

x dx =
1p
L

X

k
x

X

G

c
(k

x

)
G �q

x

,G+k
x

. (A.8)

Easy implementation is available in the Python interface, for example:
>>> import numpy;
>>> import pyalps.dwa;
>>>
>>> V0 = numpy.array([8.805, 8. , 8. ]); #lattice strength [Er]
>>> wlen = numpy.array([765., 843., 843.]); #laser wavelength [nm]
>>> a = 101; #s�wave scattering length [bohr radius]
>>> m = 86.99; #mass [a.m.u.]
>>> L = 160; #lattice of size L^3
>>>
>>> band = pyalps.dwa.bandstructure(V0, wlen, a, m, L);
>>>
>>> band

Optical lattice:
================
V0 [Er] = 8.805 8 8
lamda [nm] = 765 843 843
Er2nK = 188.086 154.89 154.89
L = 160
g = 5.51132

Band structure:
===============
t [nK] : 4.77257 4.77051 4.77051
U [nK] : 38.7027
U/t : 8.1094 8.1129 8.1129

68

A.1 Optical lattice bandstructure

Important bandstructure parameters are the hopping strength

tx = � 1

L

X

k
x

✏k
x

e�i2⇡k
x (A.6)

(likewise for ty and tz), and the onsite interaction strength

U = g

Z

|w(~r)|4 d~r = 4⇡as~2
m

Z

|w(~r)|4 d~r (A.7)

where as is the s-wave scattering length easily tunable via Feshbach resonance
technique. Finally, the Fourier transform of the wannier function is

w̃x(qx) =
1p
L

Z

wx(x)e
�i2⇡q

x

x dx =
1p
L

X

k
x

X

G

c
(k

x

)
G �q

x

,G+k
x

. (A.8)

Easy implementation is available in the Python interface, for example:
>>> import numpy;
>>> import pyalps.dwa;
>>>
>>> V0 = numpy.array([8.805, 8. , 8. ]); #lattice strength [Er]
>>> wlen = numpy.array([765., 843., 843.]); #laser wavelength [nm]
>>> a = 101; #s�wave scattering length [bohr radius]
>>> m = 86.99; #mass [a.m.u.]
>>> L = 160; #lattice of size L^3
>>>
>>> band = pyalps.dwa.bandstructure(V0, wlen, a, m, L);
>>>
>>> band

Optical lattice:
================
V0 [Er] = 8.805 8 8
lamda [nm] = 765 843 843
Er2nK = 188.086 154.89 154.89
L = 160
g = 5.51132

Band structure:
===============
t [nK] : 4.77257 4.77051 4.77051
U [nK] : 38.7027
U/t : 8.1094 8.1129 8.1129

68

(boson Hubbard model)

(Hubbard model)

Easy and convenient conversion within ALPS Python:

hopping onsite interaction
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! Bosons in a 3D optical lattice at filling n = 1
! Measure suppression of Tc close to the Mott insulator 
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Large t: superfluid BEC
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w(x� xi) ĉi (1.17)

are expanded in the wannier basis {w(x�xi)} for every site i in the optical lattice
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this cannot yet be confirmed by current experiments, due to tough challenges in
cooling the fermionic optical lattice system beyond the Neel temperature [40].
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Quantitative validation:  
1.3 Optical lattice as a quantum emulator

Figure 1.5: Comparison between theory and experiment. Average density profile
hni with respect to radial distance r in units of lattice spacing d. Blue dots -
optical lattice experiment[31]: 9400 Cs-133 bosons are confined in a 2D square
optical lattice with intensity V0 = 5ER and trapping strength VT = 0.01nK.
Band structure calculations give the hopping strength t = 4.18nK and onsite
repulsion strength U = 10.79nK. Red line - numerical-exact Quantum Monte
Carlo simulation[37]: Single-band boson Hubbard model with interaction U/t =
2.58, temperature T/t = 5.98 and trapping strength VT/t = 0.00239, thereby
exhibiting normal-fluid phase. An excellent agreement has been observed.

In the limit of deep lattice (large V0), the bosonic homogeneous optical lattice 1.11
can be effectively mapped to the boson Hubbard model [34]

Ĥ � µN̂ = �t
X

hi,ji

b̂†i b̂j +
U

2

X

i

ni(ni � 1)� µ
X

i

ni (1.14)

where the summation hi, ji extends over all nearest neighbouring lattice sites, and
the chemical potential µ determines the total number of bosons in the system.
The boson Hubbard model 1.14 has been completely solved at least numerically
[32], with its phase diagram illustrated in figure 1.4 for different interactions U/t
and temperatures T/t. The first indirect evidence of a superfluid-insulator phase
transition was derived from the time-of-flight images obtained from the experiment
by M. Greiner et al in 2002 [33], which had been numerically confirmed by Quan-
tum Monte Carlo simulations 7 years later [32]. Recent experimental advancement
has enabled density probing within single-site resolution, [35, 36] and quantitative
agreement has been found in the direct comparison between theory and experi-
ment as illustrated in figure 1.5.
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Quantitative simulations

Last but not least, the time-of-flight image observed in experiments are column-
integrated along the line-of-sight, say the z-direction:

hnf (kx, ky)i =
Z

dkzhnf (~k)i , (4.11)

as illustrated in figure 4.1.

Figure 4.1: Time of flight images (equation 4.11) obtained from QMC-DWA sim-
ulations mimicking optical lattice experiments as realistically as possible, with
interaction strength U/t = 8.11 (left) , 27.5 (right) at temperature T/t = 1. The
anisotropic optical lattice, with lattice strength ~V0 = (8.8Erx, 8Ery, 8Erz) (left),
(12.64Erx, 11.75Ery, 11.75Erz) (right), and laser wavelength ~� = (765, 843, 843)nm,
confines 2.8 ⇥ 105 (left), 9.4 ⇥ 104 (right) bosons in a parabolic trap ~VT =
(17.1, 10.9, 11.3)Hz (left), (19.9, 13.0, 13.4)Hz (right). The horizontal axes are
kx and ky in units of 2⇡, and the vertical axis is the time-of-flight distribution
hnf (kx, ky)i in unit of inverse momentum area resolution (�kx�ky)�1, taking ex-
perimental value (�kx�ky) ⇡ 0.12 in units of (2⇡)2. See appendix A.3 for further
details.

Important quantities that derive from the time-of-flight distribution include the
condensate fraction

fc = hnf (0, 0)i , (4.12)

and the visibility

V =
hnf (0, 0)i � hnf (⇡, ⇡)i
hnf (0, 0)i+ hnf (⇡, ⇡)i . (4.13)
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Fermions in an optical lattice

Introduction

In the presence of parabolic trapping, the trapped boson Hubbard hamiltonian
[38] reads

Ĥ = �t
X

hi,ji

b̂†i b̂j +
U

2

X

i

ni(ni � 1)�
X

i

(µ� VTx
2
i )ni . (1.15)

1.3.4 Fermions in an optical lattice
The hamiltonian for 2-component fermions in an optical lattice is

Ĥ =
X

�=",#

Z

dx  ̂†
�(x)

✓

� ~2
2m

r2 + V (x)

◆

 ̂�(x)

+
1

2

X

�,�0=",#

Z

dx dx0 ̂†
�(x) ̂

†
�0(x0)U(x,x0)  ̂�0(x0) ̂�(x) (1.16)

where the field operators

 ̂(x) =
X

i

w(x� xi) ĉi (1.17)

are expanded in the wannier basis {w(x�xi)} for every site i in the optical lattice
[6]. Here, ĉi and ĉ†i are annihilation and creation operators respectively at site i
that satisfy the following anti-commutation relations

{ĉi, ĉj} = 0 , {ĉ†i , ĉ†j} = 0 , {ĉi, ĉ†j} = �ij . (1.18)

In the limit of deep lattice (large V0), the fermionic homogeneous optical lattice
1.16 can be effectively mapped to the Hubbard model [24]

Ĥ = �t
X

hi,ji,�

ĉ†i� ĉj� + U
X

i

ni"ni# (1.2)

where the summation hi, ji extends over all nearest neighbouring lattice sites, and
� =", #. Unlike the bosonic case, the Hubbard model 1.2, being the simplest corre-
lation model for fermions, remains generally unsolved till today. Only for specific
cases like half-filling (hni = 1) could the Hubbard model 1.2 be solved exact nu-
merically via Quantum Monte Carlo methods [39]. At half-filling towards larger
interaction U/t, the Hubbard model is driven from the Mott insulating phase to
the antiferromagnetic phase with decreasing temperature T/t [39]. Unfortunately,
this cannot yet be confirmed by current experiments, due to tough challenges in
cooling the fermionic optical lattice system beyond the Neel temperature [40].
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Quantum Monte Carlo -- negative sign problem
M. Troyer, U-J. Weise, PRL 94, 170201 (2005)

2

within a statistical error ∆A =
√

VarA(2τA + 1)/M ,
where VarA is the variance of A and the integrated auto-
correlation time τA is a measure of the autocorrelations
of the sequence {A(ci)}. In typical statistical physics ap-
plications, p(c) = exp(−βE(c)) is the Boltzmann weight,
β = 1/kBT is the inverse temperature, and E(c) is the
energy of the configuration c.

Since the dimension of configuration space Ω grows lin-
early with the number N of particles, the computational
effort for the direct integration Eq. (1) scales exponen-
tially with the particle number N . Using the Monte Carlo
approach the same average can be estimated to any de-
sired accuracy in polynomial time, as long as the auto-
correlation time τA does not increase faster than polyno-
mially with N .

In a quantum system with Hamilton operator H , in-
stead of an integral like Eq. (1), an operator expression

〈A〉 =
1

Z
Tr[A exp(−βH)] , Z = Tr exp(−βH) (3)

needs to be evaluated in order to calculate the thermal
average of the observable A (represented by a self-adjoint
operator). Monte Carlo techniques can again be applied
to reduce the exponential scaling of the problem, but only
after mapping the quantum model to a classical one. One
approach to this mapping[4] is a Taylor expansion [5]:

Z = Tr exp(−βH) =
∞
∑

n=0

(−β)n

n!
TrHn (4)

=
∞
∑

n=0

∑

i1,...,in

(−β)n

n!
〈i1|H |i2〉〈i2|H |i3〉 · · · 〈in|H |i1〉

≡
∞
∑

n=0

∑

i1,...,in

p(i1, ..., in) ≡
∑

c

p(c),

where for each order n in the expansion we insert n sums
over complete sets of basis states {|i〉}. The “configura-
tions” are sequences c = (i1, ..., in) of n basis states and
we define the weight p(c) by the corresponding product
of matrix elements of H and the term (−β)n/n!. With a
similar expansion for Tr[A exp(−βH)] we obtain an ex-
pression reminiscent of classical problems:

〈A〉 =
1

Z
Tr[A exp(−βH)] =

1

Z

∑

c

A(c)p(c). (5)

If all the weights p(c) are positive, standard Monte
Carlo methods can be applied, as it is the case for non-
frustrated quantum magnets and bosonic systems. In
fermionic systems [6] negative weights p(c) < 0 arise
from the Pauli exclusion principle, when along the se-
quence |i1〉 → |i2〉 → · · · → |in〉 → |i1〉 two fermions are
exchanged, as shown in Fig. 1.

The standard way of dealing with the negative weights
of the fermionic system is to sample with respect to

|i1>

|i2>

|i3>

|i4>

|i1>

FIG. 1: A configuration of a fermionic lattice model on a 4-
site square. The configuration has negative weight, since two
fermions are exchanged in the sequence |i1〉 → |i2〉 → |i3〉 →
|i4〉 → |i1〉. World lines connecting particles on neighboring
slices are drawn as thick lines.

the bosonic system by using the absolute values of the
weights |p(c)| and to assign the sign s(c) ≡ sign p(c) to
the quantity being sampled:

〈A〉 =

∑

c A(c)p(c)
∑

c p(c)
(6)

=

∑

c A(c)s(c)|p(c)| /
∑

c |p(c)|
∑

c s(c)|p(c)| /
∑

c |p(c)|
≡

〈As〉′

〈s〉′
.

While this allows Monte Carlo simulations to be per-
formed, the errors increase exponentially with the par-
ticle number N and the inverse temperature β. To see
this, consider the mean value of the sign 〈s〉 = Z/Z ′,
which is just the ratio of the partition functions of the
fermionic system Z =

∑

c p(c) with weights p(c) and the
bosonic system used for sampling with Z ′ =

∑

c |p(c)|.
As the partition functions are exponentials of the cor-
responding free energies, this ratio is an exponential of
the differences ∆f in the free energy densities:〈s〉 =
Z/Z ′ = exp(−βN∆f). As a consequence, the relative
error ∆s/〈s〉 increases exponentially with increasing par-
ticle number and inverse temperature:

∆s

〈s〉
=

√

(〈s2〉 − 〈s〉2) /M

〈s〉
=

√

1 − 〈s〉2√
M〈s〉

∼
eβN∆f

√
M

. (7)

Similarly the error for the numerator in Eq. (7) in-
creases exponentially and the time needed to achieve a
given relative error scales exponentially in N and β.

In order to avoid any misconception about what would
constitute a “solution” of the sign problem, we start by
giving a precise definition:

• A quantum Monte Carlo simulation to calculate a
thermal average 〈A〉 of an observable A in a quan-
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the bosonic system by using the absolute values of the
weights |p(c)| and to assign the sign s(c) ≡ sign p(c) to
the quantity being sampled:
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While this allows Monte Carlo simulations to be per-
formed, the errors increase exponentially with the par-
ticle number N and the inverse temperature β. To see
this, consider the mean value of the sign 〈s〉 = Z/Z ′,
which is just the ratio of the partition functions of the
fermionic system Z =
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c p(c) with weights p(c) and the
bosonic system used for sampling with Z ′ =

∑

c |p(c)|.
As the partition functions are exponentials of the cor-
responding free energies, this ratio is an exponential of
the differences ∆f in the free energy densities:〈s〉 =
Z/Z ′ = exp(−βN∆f). As a consequence, the relative
error ∆s/〈s〉 increases exponentially with increasing par-
ticle number and inverse temperature:
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∼
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Similarly the error for the numerator in Eq. (7) in-
creases exponentially and the time needed to achieve a
given relative error scales exponentially in N and β.

In order to avoid any misconception about what would
constitute a “solution” of the sign problem, we start by
giving a precise definition:

• A quantum Monte Carlo simulation to calculate a
thermal average 〈A〉 of an observable A in a quan-

~ scales exponentially with 
1) inverse temperature β, and 
2) system size N.

Therefore, phase diagram for fermions is not entirely clear in general

At half-filling, the Hubbard model exhibits antiferromagnetic ground state.
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MagnetismTime Line

585 B.C.

Chapter 6

Magnetism in optical lattice

6.1 Introduction
“ ... loadstone attracts iron because it has a soul.”

— Thales of Miletus, ⇠ 585 B.C.
The peculiar phenomenon of magnetism has been intriguing mankind ever since
the times of Thales from Miletus [57]. It took till the year of 1887 for James Clerk
Maxwell to summarize all of classical electromagnetism macroscopically in his four
equations [2], which motivated Albert Einstein in his theory of special relativity
in 1905 [58]. Its enormous success firmly lay the fundamental basis for the entire
electrical and electronic engineering today. Microscopically, nature is governed by
the laws of quantum mechanics [3], which successfully explain the atomic origin of
magnetism. On the weak side, diamagnetism (paramagnetism) is the consequence
of orbital (spin) angular momentum coupling in electrons (unpaired electrons) with
external magnetic fields [10]. On the strong side, ferromagnetism is a consequence
of exchange interactions between electrons [59]. In a tight binding solid without
charge degree of freedom, ferromagnetism has been theoretically explained by the
Heisenberg model with qualitative success. Besides ferromagnetism, other types of
magnetism, such as antiferromagetism and ferrimagnetism, have been discovered
over the recent decades to exist in some solids at room temperature [20].

Not only in solids, exotic ferromagnetism has been recently discovered in 2009 to
exist in ultracold atomic Fermi gases at extremely low temperatures below 1 nK
[60], giving direct experimental evidence to the theoretical prediction for itinerent
ferromagnetism described by the Stoner model [59], i.e.

Ĥ =
X

k,�

✏
k

ĉ†
k

ĉ
k

+
1

2

U

N

X

k1k2
q 6=0

ĉ†
k1+q "ĉ

†
k2�q #ĉk2 #ĉk1 " . (6.1)
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1887 Classical electromagnetism 
(Maxwell’s equations):

1926 Quantum Mechanics 
(Schrodinger equation):

Chapter 1

Introduction

1.1 Birth of a quantum era
The entire human civilization was brought to believe that nature were certain and
deterministic prior the 20th century. This belief is in fact the principle behind
Newtonian classical mechanics [1], which lays the foundation of the tallest archi-
tecture and the fastest bullet train on Earth. Further evidence for the belief came
in 1861-2 when James Clerk Maxwell unified classical electromagnetism under his
four Maxwell equations [2]. At that time, science and technology could all be ex-
plained by classical mechanics. Its extraordinary beauty had in fact blinded many
scientists up to the mid-twentieth century, including the mighty Albert Einstein
who once made the following comment.

“God does not play dice with the universe.”

— Albert Einstein, The Born-Einstein Letters 1916-55

The beginning of the 20th century marked a revolutionary period among the sci-
entific community, where a series of microscopic experiments1, one after another,
failed to comply by the law of classical mechanics. [3] Evidence provided by these
experiments slowly convinced some scientists at that time that all microscopic par-
ticles are waves. In 1926, Erwin Schrd̈ingier formulated the wave interpretation of
quantum mechanics by the proposal of his Schrödingier equation [4]

i~ @
@t
 (x, t) =

✓

� ~2
2m

r2 + V (x, t)

◆

 (x, t) (1.1)

1Classical mechanics became inadequate in explaining a series of microscopic experiments.
Some examples include the black-body radiation, the photoelectric effect, the Compton effect,
the discretization of atomic energy spectra, and the quantization of angular momentum. [3]
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1928: Quantum mechanics appiled to solids
 Birth of Heisenberg model 

Kohn-Sham DFT:

Density functional theory

5.1.3 Kohn-Sham formalism
The kinetic part is usually highly non-local and cannot be treated well under the
local approximation. Therefore, Kohn and Sham [54] proposed a more accurate
functional by explicitly including the exact kinetic energy T0 of non-interacting
fermions. What is left is the interaction energy EHXC, combining the usual Hartree
(mean field term) EH and the exchange-correlation correction EXC :

F [⇢", ⇢#] = T0 [⇢", ⇢#] + EHXC [⇢", ⇢#] . (5.6)

A simple yet often reliable treatment of EHXC is the local spin-density approxima-
tion (LSDA)

EHXC [⇢", ⇢#] =

Z

dr ✏HXC (⇢" (r) , ⇢# (r)) , (5.7)

where the functional is replaced by an integral over the interaction energy density3

of a uniform system with the same local density. The objective is now to minimize
the total energy

E =

Z
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(5.9)

with respect to the spin densities (� =", #)
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where ��
n (r) are normalized single-quasiparticle spin-orbitals filled to the Fermi

level. Minimizing equation 5.9 with respect to the complex conjugate quasiparticle
spin orbital ��⇤

n (r) subjected to the normalization constraint
R

dr |��
n (r)|2 = 1, we

arrive at the coupled Kohn-Sham (KS) eigenvalue equations [52]
✓

� ~2
2m

r2 + V (r) + V HXC
� (⇢", ⇢#; r)

◆

��
n = ✏�n �

�
n (5.11)

where the Langrange multiplier ✏�n is in fact the KS quasiparticle energy. Here, the
hartree-exchange-correlation potential is

V HXC
� (⇢", ⇢#; r) =

�

�⇢�(r)
[✏HXC(⇢", ⇢#; r)] (5.12)
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Stoner ferromagnetism experimentally 
detected in (ultracold) gases.

1. many-body ➝ effective single-body quantum problem
2. largely successful in electronic structure problems
3. inadequate to explain (strong) magnetism

Magnetism in gases
Magnetism in solids
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Magnetism in optical lattice

6.1 Introduction
“ ... loadstone attracts iron because it has a soul.”

— Thales of Miletus, ⇠ 585 B.C.
The peculiar phenomenon of magnetism has been intriguing mankind ever since
the times of Thales from Miletus [57]. It took till the year of 1887 for James Clerk
Maxwell to summarize all of classical electromagnetism macroscopically in his four
equations [2], which motivated Albert Einstein in his theory of special relativity
in 1905 [58]. Its enormous success firmly lay the fundamental basis for the entire
electrical and electronic engineering today. Microscopically, nature is governed by
the laws of quantum mechanics [3], which successfully explain the atomic origin of
magnetism. On the weak side, diamagnetism (paramagnetism) is the consequence
of orbital (spin) angular momentum coupling in electrons (unpaired electrons) with
external magnetic fields [10]. On the strong side, ferromagnetism is a consequence
of exchange interactions between electrons [59]. In a tight binding solid without
charge degree of freedom, ferromagnetism has been theoretically explained by the
Heisenberg model with qualitative success. Besides ferromagnetism, other types of
magnetism, such as antiferromagetism and ferrimagnetism, have been discovered
over the recent decades to exist in some solids at room temperature [20].

Not only in solids, exotic ferromagnetism has been recently discovered in 2009 to
exist in ultracold atomic Fermi gases at extremely low temperatures below 1 nK
[60], giving direct experimental evidence to the theoretical prediction for itinerent
ferromagnetism described by the Stoner model [59], i.e.
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Itinerant ferromagnetism of a repulsive atomic Fermi gas:
a quantum Monte Carlo study

S. Pilati,1 G. Bertaina,2 S. Giorgini,2 and M. Troyer1

1Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland
2Dipartimento di Fisica, Università di Trento and CNR-INO BEC Center, I-38050 Povo, Trento, Italy

We investigate the phase diagram of a two-component repulsive Fermi gas at T = 0 by means of
quantum Monte Carlo simulations. For a given value of the positive s-wave scattering length, both
purely repulsive and purely attractive model potentials are considered in order to analyze the limits
of the universal regime where the details of interatomic forces can be neglected. The equation of
state of both balanced and unbalanced systems is calculated as a function of the interaction strength
and the critical density for the onset of ferromagnetism is determined. The energy per particle of the
strongly polarized gas is calculated and parametrized in terms of the physical properties of repulsive
polarons, which are relevant for the stability of the fully magnetized ferromagnetic state. Finally,
we analyze the phase diagram in the polarization/interaction plane under the assumption that only
phases with homogeneous magnetization can be produced.

PACS numbers: 05.30.Fk, 03.75.Hh, 75.20.Ck

Over the past decade there has been substantial
progress in the experimental realization of quantum de-
generate atomic Fermi gases. A major part of the activ-
ity carried out so far was devoted to the investigation
of the role of attractive interactions, with special em-
phasis on the onset of pairing and superfluidity in the
vicinity of a Feshbach resonance as well as in the pres-
ence of spin imbalance [1]. More recently attention was
drawn to repulsive interactions and the onset of mag-
netic behavior. This topic is particularly important in
optical lattices because of its connection with the repul-
sive Hubbard model, a fundamental paradigm of con-
densed matter physics with still many unanswered ques-
tions [2], but also for continuous systems where a major
recent achievement has been the observation of itiner-
ant ferromagnetism induced by repulsive forces in a two-
component Fermi gas [3]. This experiment realizes the
Stoner model, a textbook Hamiltonian that aims to de-
scribe itinerant ferromagnetism in an electron gas with
screened Coulomb interaction [4].
On the theoretical side there have been a number of

papers addressing the problem of stability of a repulsive
two-component Fermi gas [5] and of phase separation in
harmonic trapped configurations within the local density
approximation [6]. These studies are based on a simple
mean-field description of interaction effects that is valid
to linear order in the scattering length. In homogeneous
systems at T = 0 they predict a second order phase tran-
sition to a magnetized state if the interaction strength
is larger than the critical value kF a > π/2, where a is
the s-wave scattering length and kF = (3π2n)1/3 is the
Fermi wave vector in terms of the total particle density of
the gas n = n↑ + n↓. An extension of this approach that
includes next order corrections to the interaction energy
was developed in Ref. [7] and predicts a smaller value of
the critical density (kF a > 1.054), as well as a discontin-
uous jump in the magnetization. Low-energy theories of
itinerant fermions also predict a first-order transition [8].
A recent non-perturbative quantum Monte Carlo calcu-
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FIG. 1: (color online). Phase diagram of the HS gas in the
interaction/polarization plane. The green region corresponds
to the homogeneous phase. The other regions correspond to
phase separated states with partially polarized domains (yel-
low) and fully ferromagnetic domains (pink). The (blue) sym-
bols correspond to the minimum of the curve E(P ) and the
solid/dashed line is the phase boundary determined from the
equilibrium condition for pressure and chemical potentials.
The blue and red arrows indicate the critical densities where
χ diverges and full ferromagnetism sets in, respectively for
the HS and SW potential.

lation, instead, suggests the existence of a textured mag-
netic phase at the border of the ferromagnetic transition
and yields the value kFa ! 0.8 for the critical density [9].
On the other hand, the existence of a ferromagnetic tran-
sition has been questioned in Ref. [10] by arguing that
nonmagnetic states with strong short-ranged repulsive
correlations could be energetically favorable compared to
ferromagnetic ones.
Various important issues concerning the regime of

strong repulsion are still open. In this Letter we provide
answer to some of them, in particular: i) we calculate the
equation of state of the Fermi gas using different poten-
tials to determine the regime of interaction strength kFa

Magnetism in (ultracold) gases

Cartoon illustration

Introduction

Figure 1.2: Schematic illustration of the Gaussian confinement of bosons.[28] Top:
A pair of counter-propagating laser beams interfere in the x-direction to form
an enveloped standing wave of intensity V0, with trapping envelope of waist w0.
Bottom: Near the centre, the optical potential is almost uniformly periodic, i.e.
V0 sin

2(kx), with an additional parabolic trapping term V0

w2
0
x2.

the vicinity close to the center of the gaussian trap, therefore effectively confined
by the first order parabolic trapping term. Taking into account also all other
parabolic trapping, the trapping potential can be effectively written as

VT (x) = VTx
2 (1.5)

where VT is the strength of the parabolic trapping.

1.3.2 Single particle in an optical lattice
To better conceptualise the physics, let us hypothetically consider a single parti-
cle of mass m in an optical lattice. Within non-relativisitic regime, its quantum
mechanical nature is captured by the Schrd̈ingier equation in reciprocal space
Ĥ

k

u
k

= E
k

u
k

. [29] Due to the periodicity of the optical lattice, the Bloch Hamil-
tonian is given by

Ĥ =
~2
2m

(�ir+ k)2 + V (x) , (1.6)

where the k-points in reciprocal space take values depending individually on dif-
ferent lattice geometries. Figure 1.3 illustrates the energy band structure E

k

of an
optical lattice, where one could clearly observe the opening of a energy band gap
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Magnetism in optical lattice

6.1 Introduction
“ ... loadstone attracts iron because it has a soul.”

— Thales of Miletus, ⇠ 585 B.C.
The peculiar phenomenon of magnetism has been intriguing mankind ever since
the times of Thales from Miletus [57]. It took till the year of 1887 for James Clerk
Maxwell to summarize all of classical electromagnetism macroscopically in his four
equations [2], which motivated Albert Einstein in his theory of special relativity
in 1905 [58]. Its enormous success firmly lay the fundamental basis for the entire
electrical and electronic engineering today. Microscopically, nature is governed by
the laws of quantum mechanics [3], which successfully explain the atomic origin of
magnetism. On the weak side, diamagnetism (paramagnetism) is the consequence
of orbital (spin) angular momentum coupling in electrons (unpaired electrons) with
external magnetic fields [10]. On the strong side, ferromagnetism is a consequence
of exchange interactions between electrons [59]. In a tight binding solid without
charge degree of freedom, ferromagnetism has been theoretically explained by the
Heisenberg model with qualitative success. Besides ferromagnetism, other types of
magnetism, such as antiferromagetism and ferrimagnetism, have been discovered
over the recent decades to exist in some solids at room temperature [20].

Not only in solids, exotic ferromagnetism has been recently discovered in 2009 to
exist in ultracold atomic Fermi gases at extremely low temperatures below 1 nK
[60], giving direct experimental evidence to the theoretical prediction for itinerent
ferromagnetism described by the Stoner model [59], i.e.
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59-- first observed experimentally in an 
   ultracold 6Li gaseous cloud in 2009.

G-B. Jo, et al, 
Itinerant ferromagnetism in a Fermi gas of ultracold atoms,
Science 325, 5947 (2009).

-- phase diagram

S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer,
Itinerant ferromagnetism of a repulsive atomic Fermi gas: a 
quantum Monte Carlo study
Phys. Rev. Lett. 105, 030405 (2010).

6.2 Ferromagnetism in optical lattice

It is obvious that solids favour ferromagnetism over gases. Indeed, as will be shown
later in this chapter, itinerant ferromagnetism of atomic Fermi gases is stabilized
by an optical lattice with increasing laser intensity V0. Furthermore, calculations
from density functional theory recover the antiferromagnetic state towards the
Hubbard limit at half-filling, therefore justifying the validation of our theory.

This chapter is based on one of my publications [52].

6.2 Ferromagnetism in optical lattice

6.2.1 Probing ferromagnetism by Kohn-Sham DFT
Calculating the ground-state polarization

P =
⇢" � ⇢#
⇢" + ⇢#

(6.2)

for a range of lattice depths V0, band fillings n, and interaction strengths a/d based
on Kohn-Sham density functional theory 5.15, we obtain the phase diagrams shown
in figure 6.1.
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Figure 6.1: Phase diagrams at fixed optical lattice intensity V0. The
red-color intensity indicates the polarization P for optical lattice depths (a)
V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ER. The green and blue curves indicate,
respectively, the transitions to partially and fully polarized phases in homogeneous
systems (V0 = 0). The gray and yellow curves indicate the corresponding transi-
tions in the optical lattice. Ferromagnetism dominates in the region of large optical
lattice intensity V0 and scattering length a, where the non-trivial phase boundary
arises due to the Kohn-Sham band theory.
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Figure 1.2: Schematic illustration of the Gaussian confinement of bosons.[28] Top:
A pair of counter-propagating laser beams interfere in the x-direction to form
an enveloped standing wave of intensity V0, with trapping envelope of waist w0.
Bottom: Near the centre, the optical potential is almost uniformly periodic, i.e.
V0 sin

2(kx), with an additional parabolic trapping term V0

w2
0
x2.

the vicinity close to the center of the gaussian trap, therefore effectively confined
by the first order parabolic trapping term. Taking into account also all other
parabolic trapping, the trapping potential can be effectively written as

VT (x) = VTx
2 (1.5)

where VT is the strength of the parabolic trapping.

1.3.2 Single particle in an optical lattice
To better conceptualise the physics, let us hypothetically consider a single parti-
cle of mass m in an optical lattice. Within non-relativisitic regime, its quantum
mechanical nature is captured by the Schrd̈ingier equation in reciprocal space
Ĥ
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k
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. [29] Due to the periodicity of the optical lattice, the Bloch Hamil-
tonian is given by

Ĥ =
~2
2m

(�ir+ k)2 + V (x) , (1.6)

where the k-points in reciprocal space take values depending individually on dif-
ferent lattice geometries. Figure 1.3 illustrates the energy band structure E
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of an
optical lattice, where one could clearly observe the opening of a energy band gap
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6.2 Ferromagnetism in optical lattice

It is obvious that solids favour ferromagnetism over gases. Indeed, as will be shown
later in this chapter, itinerant ferromagnetism of atomic Fermi gases is stabilized
by an optical lattice with increasing laser intensity V0. Furthermore, calculations
from density functional theory recover the antiferromagnetic state towards the
Hubbard limit at half-filling, therefore justifying the validation of our theory.

This chapter is based on one of my publications [52].

6.2 Ferromagnetism in optical lattice

6.2.1 Probing ferromagnetism by Kohn-Sham DFT
Calculating the ground-state polarization

P =
⇢" � ⇢#
⇢" + ⇢#

(6.2)

for a range of lattice depths V0, band fillings n, and interaction strengths a/d based
on Kohn-Sham density functional theory 5.15, we obtain the phase diagrams shown
in figure 6.1.
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Figure 6.1: Phase diagrams at fixed optical lattice intensity V0. The
red-color intensity indicates the polarization P for optical lattice depths (a)
V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ER. The green and blue curves indicate,
respectively, the transitions to partially and fully polarized phases in homogeneous
systems (V0 = 0). The gray and yellow curves indicate the corresponding transi-
tions in the optical lattice. Ferromagnetism dominates in the region of large optical
lattice intensity V0 and scattering length a, where the non-trivial phase boundary
arises due to the Kohn-Sham band theory.
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Density functional theory

5.3 Remarks

5.3.1 Validity of Kohn-Sham density functional theory
The validity of Kohn-Sham density functional theory (DFT) for fermionic opti-
cal lattices can be tested through quantitative comparisons with direct Quantum
Monte Carlo (QMC) simulations4. The excellent agreement, as illustrated in figure
5.1, demonstrates that DFT calculations with an LSDA functional are extremely
reliable in weak and moderate optical lattices, therefore justifying its validity.
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Figure 5.1: Comparison of DFT results to QMC. Main panel: energy per
particle E/N vs. optical lattice intensity V0, at quarter-filling n = ⇢d3 = 0.5
with scattering length a = 0.04d. The green curve is the results of Kohn-Sham
DFT within the local spin-density approximation, the red points to Fixed-Node
Diffusion Monte Carlo simulations. Inset: cross-sectional density profile on one
lattice site, particularly at the lattice intensity of V0 = 2.0ER.

4We perform fixed-node diffusion Monte Carlo simulations for fermionic optical lattice, ex-
tended from the previous study of the homogeneous system [70]. To simulate Fermi gases in an
optical lattice of sinple cubic geometry, we employ the trial wave function (B.1) using the Bloch
states (5.14) (obtained by solving the equation (5.11) for different lattice depths V (r) without
scattering, i.e. a = 0) as single-particle orbitals. The Bloch states are expanded in a plane-wave
basis, as in equation (5.18), using up to 133 states. Unlike other Monte Carlo techniques for
the single-band Fermi-Hubbard model which are in principle reliable only for deep lattices, this
current version of continuous-space fixed-node diffusion Monte Carlo method allows one to simu-
late also moderate and shallow lattices. It is analogous to a recent bosonic Monte Carlo method
based on the ground-state Path-Integral Monte Carlo algorithm, which has been used to perform
a continuous-space simulation of the superfluid-to-insulator transition of hard-sphere bosons in
optical lattices, going beyond the single-band approximation [79].
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6.2 Ferromagnetism in optical lattice

It is obvious that solids favour ferromagnetism over gases. Indeed, as will be shown
later in this chapter, itinerant ferromagnetism of atomic Fermi gases is stabilized
by an optical lattice with increasing laser intensity V0. Furthermore, calculations
from density functional theory recover the antiferromagnetic state towards the
Hubbard limit at half-filling, therefore justifying the validation of our theory.

This chapter is based on one of my publications [52].
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6.2.1 Probing ferromagnetism by Kohn-Sham DFT
Calculating the ground-state polarization
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for a range of lattice depths V0, band fillings n, and interaction strengths a/d based
on Kohn-Sham density functional theory 5.15, we obtain the phase diagrams shown
in figure 6.1.
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Figure 6.1: Phase diagrams at fixed optical lattice intensity V0. The
red-color intensity indicates the polarization P for optical lattice depths (a)
V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ER. The green and blue curves indicate,
respectively, the transitions to partially and fully polarized phases in homogeneous
systems (V0 = 0). The gray and yellow curves indicate the corresponding transi-
tions in the optical lattice. Ferromagnetism dominates in the region of large optical
lattice intensity V0 and scattering length a, where the non-trivial phase boundary
arises due to the Kohn-Sham band theory.

60

Ferromagnetism is enhanced by optical lattice (band structure effects):

Density functional theory

5.1.3 Kohn-Sham formalism
The kinetic part is usually highly non-local and cannot be treated well under the
local approximation. Therefore, Kohn and Sham [54] proposed a more accurate
functional by explicitly including the exact kinetic energy T0 of non-interacting
fermions. What is left is the interaction energy EHXC, combining the usual Hartree
(mean field term) EH and the exchange-correlation correction EXC :

F [⇢", ⇢#] = T0 [⇢", ⇢#] + EHXC [⇢", ⇢#] . (5.6)

A simple yet often reliable treatment of EHXC is the local spin-density approxima-
tion (LSDA)

EHXC [⇢", ⇢#] =

Z

dr ✏HXC (⇢" (r) , ⇢# (r)) , (5.7)

where the functional is replaced by an integral over the interaction energy density3

of a uniform system with the same local density. The objective is now to minimize
the total energy

E =

Z
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T0 [⇢", ⇢#; r] + V (r)
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(5.9)

with respect to the spin densities (� =", #)
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where ��
n (r) are normalized single-quasiparticle spin-orbitals filled to the Fermi

level. Minimizing equation 5.9 with respect to the complex conjugate quasiparticle
spin orbital ��⇤

n (r) subjected to the normalization constraint
R

dr |��
n (r)|2 = 1, we

arrive at the coupled Kohn-Sham (KS) eigenvalue equations [52]
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where the Langrange multiplier ✏�n is in fact the KS quasiparticle energy. Here, the
hartree-exchange-correlation potential is
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Kohn-Sham density functional theory (KS-DFT):

Density functional theory

5.1.3 Kohn-Sham formalism
The kinetic part is usually highly non-local and cannot be treated well under the
local approximation. Therefore, Kohn and Sham [54] proposed a more accurate
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-- KS-DFT is exact only with exact h.x.c. potential:

-- Local density approximation (LDA) to h.x.c. potential
(See appendix B in thesis.)

Q: How valid is KS-DFT?
A: KS-DFT works (quantitatively)     
    for shallow optical lattice
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In a shallow lattice with V0 = 0.5ER (figure 6.1(a)) we see three phases: a para-
magnetic phase at weak interactions (white), partially polarized (shown as pink
gradations), and fully polarized (ferromagnetic, shown in solid red). The phase
boundaries in this shallow lattice are similar to those of the homogeneous sys-
tem V0 = 0 [70], indicated by the green and blue lines. In deeper optical lattices
(V0 = 2ER in figure 6.1(b) and V0 = 4ER in figure 6.1(c)) polarization sets in
at much weaker interactions, indicating that the optical lattice strongly favours
itinerant ferromagnetism.
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Figure 6.2: Band structure. Shown are band structures for two lattice depths,
V0 = 2ER in the left column and V0 = 4ER in the right column, and three values of
scattering length (a = 0.04, 0.08, 0.16 d from top to bottom) at half-filling n = 1.
The blue and red curve corresponds to the majority and minority spin-component
respectively. The black curve is the result for an unpolarized noninteracting gas.
Energies are given relative to the chemical potential, shown as a dashed green
line at 0. The wave-vector values (given on the x-axis in units of scan a curve
which goes through the high symmetry points � = (0, 0, 0), X = (0, ⇡/d, 0), R =
(⇡/d, ⇡/d, ⇡/d) and M = (⇡/d, ⇡/d, 0) of the first Brillouin zone.
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6.2 Ferromagnetism in optical lattice

It is obvious that solids favour ferromagnetism over gases. Indeed, as will be shown
later in this chapter, itinerant ferromagnetism of atomic Fermi gases is stabilized
by an optical lattice with increasing laser intensity V0. Furthermore, calculations
from density functional theory recover the antiferromagnetic state towards the
Hubbard limit at half-filling, therefore justifying the validation of our theory.

This chapter is based on one of my publications [52].

6.2 Ferromagnetism in optical lattice

6.2.1 Probing ferromagnetism by Kohn-Sham DFT
Calculating the ground-state polarization

P =
⇢" � ⇢#
⇢" + ⇢#

(6.2)

for a range of lattice depths V0, band fillings n, and interaction strengths a/d based
on Kohn-Sham density functional theory 5.15, we obtain the phase diagrams shown
in figure 6.1.
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Figure 6.1: Phase diagrams at fixed optical lattice intensity V0. The
red-color intensity indicates the polarization P for optical lattice depths (a)
V0 = 0.5ER, (b) V0 = 2ER, (c) V0 = 4ER. The green and blue curves indicate,
respectively, the transitions to partially and fully polarized phases in homogeneous
systems (V0 = 0). The gray and yellow curves indicate the corresponding transi-
tions in the optical lattice. Ferromagnetism dominates in the region of large optical
lattice intensity V0 and scattering length a, where the non-trivial phase boundary
arises due to the Kohn-Sham band theory.
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a/d = 4%

a/d = 8%

a/d = 16%

KS-DFT:

5.2 KS-DFT for fermionic optical lattice

It is convenient to define the KS single-quasiparticle hamiltonian

Ĥ�
KS = � ~2

2m
r2 + V e↵

� (⇢", ⇢#; r) (5.13)

where the effective potential is V e↵
� (⇢", ⇢#; r) = V (r) + V HXC

� (⇢", ⇢#; r).

5.2 KS-DFT for fermionic optical lattice

5.2.1 Lattice translational symmetry
In an optical lattice with periodicity d, i.e. V (r + d) = V (r), we shall make use
of Bloch’s theorem [29] to rewrite the KS quasiparticle orbitals as

��
nk (r) = e2⇡ik·ru�

nk (r) , (5.14)

with periodic Bloch orbitals u�
nk (r). The wavevectors k run over the first Brillouin

zone of the reciprocal lattice. Working in the units of lattice spacing d = �
2

and
recoil energy ER = ~2

2m

�

2⇡
�

�2 (~ is the reduced Planck constant and m the atomic
mass), the coupled Kohn-Sham eigenvalue equations 5.11 become



1

⇡2
(�ir+ 2⇡k)2 + V e↵

� (⇢", ⇢#; r)

�

u�
nk (r) = ✏�nku

�
nk (r) . (5.15)

They must be solved self-consistently with the ground state densities

⇢� (r) =
X

nk

|u�
nk (r)|2 ⇥ (µ� ✏�nk) (5.16)

where ⇥(· · · ) is the Heaviside function. The total ground state energy is calculated
from the set of all quasiparticle energies ✏�nk as

E =
X

nk�

✏�nk⇥ (µ� ✏�nk) (5.17)

up to the Fermi level. The Bloch orbitals are next expanded in the plane wave
basis

u�
nk (r) =

X

G

c�nk (G) exp (2⇡iG · r) , (5.18)

the KS equation (5.15) becomes a coupled set of matrix eigenvalue equations

4 (G+ k)2 c�nk (G) +
X

G

0

V e↵
G�G

0c�nk (G
0) = ✏�nkc

�
nk (G) (5.19)
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simple cubic (sc) lattice:

Density functional theory

for reciprocal vectors G. As a remark, the effective potential possesses both trans-
lational and inversion symmetry, and therefore its Fourier components

V e↵
G

=
1

M3

Z

unitcell

V e↵ (r) exp (�2⇡iG · r) dr (5.20)

must be real and related by V e↵
G

= V e↵
�G

.

5.2.2 Simple cubic lattice (Oh symmetry)
An isotropic three dimensional optical lattice with simple cubic (sc) geometry
possesses Oh point group symmetry [55], therefore likewise for the corresponding
reciprocal lattice and its band structure [29]. With M⇥M⇥M being the dimensions
of the lattice, the reciprocal lattice basis vectors read

b1 = x̂ , b2 = ŷ , b3 = ẑ (5.21)

and the reciprocal lattice vectors are

G =
m1

M
b1 +

m2

M
b2 +

m3

M
b3 (5.22)

where m1,m2,m3 = 0,±1,±2, · · · . Knowing the point group symmetry of the band
structure reduces computational efforts greatly. The Oh point group possesses, for
instance, inversion (J) and reflection (�h, �d) symmetries [55], thus giving rise to
the following 48-fold degeneracy for the quasiparticle energies ✏�nk:
1. J-symmetry:

✏�n(k
x

,k
y

,k
z

) = ✏�n(�k
x

,�k
y

,�k
z

) (5.23)

2. �h-symmetry:

✏�n(k
x

,k
y

,k
z

) = ✏�n(±k
x

,±k
y

,±k
z

) (5.24)

3. �d-symmetry:

✏�n(k
x

,k
y

,k
z

) = ✏�n(k
y

,k
x

,k
z

) (5.25)
✏�n(k

x

,k
y

,k
z

) = ✏�n(k
x

,k
z

,k
y

) (5.26)
✏�n(k

x

,k
y

,k
z

) = ✏�n(k
z

,k
y

,k
x

) . (5.27)

Note that the same degeneracy exists likewise for the norm of quasiparticle orbitals
|��

n(r)|2, therefore reducing computational efforts further.

The high-symmetry k-points in the band structure of the sc lattice are
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Notation k-point
� (0, 0, 0)
X (1/2, 0, 0)
M (1/2, 1/2, 0)
R (1/2, 1/2, 1/2)

In the event of anistropy along the z-direction, some of the degeneracies within
the Oh point group are lifted, thus resulting in a D4h point group. Its symmetry
can be easily worked out from the respective character table [55].

5.2.3 Face centered cubic lattice
A primitive cell, consisting of two adjacent lattice sites within simple cubic (sc)
geometry, translates to form a face centered cubic (fcc) lattice, therefore resulting
in a body centered cubic (bcc) reciprocal lattice [29]. With M⇥M⇥M being the
dimensions of the optical lattice, the reciprocal lattice basis vectors read

b1 =
1

2
(x̂+ ŷ � ẑ) , b2 =

1

2
(x̂� ŷ + ẑ) , b3 =

1

2
(�x̂+ ŷ + ẑ) (5.28)

and the reciprocal lattice vectors are

G =
m1

M
b1 +

m2

M
b2 +

m3

M
b3 (5.29)

where m1,m2,m3 = 0,±1,±2, · · · . The band structure still possesses Oh point
group symmetry which facilitates the reduction of computational efforts greatly.
The high symmetry k-points in the band structure of the fcc lattice are

Notation k-point
� (0, 0, 0)
X (1/2, 0, 0)
W (1/4, 1/2, 0)
L (1/4, 1/4, 1/4)

For two identical sites within the primitive cell of a fcc lattice, its band structure
is in fact equivilant to the band structure of a sc lattice. More specifically in this
scenario, each energy band of a sc lattice are folded into two bands of a fcc lattice
about some highly symmetric k-planes.
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Conclusion:

Band structure effects 
stablizes ferromagnetism.
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6.3 Antiferromagnetism in optical lattice
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Figure 6.5: Phase diagram and antiferromagnetic (AF) band structure at
half filling n = ⇢d3 = 1. Left: Ferromagnetic (antiferromagnetic) phases are indi-
cated by the red-colored polarization (blue-colored staggered polarization). As the
scattering length a increases, the fermionic optical lattice undergoes phase tran-
sitions from an unpolarized to an antiferromagnetic and finally to ferromagnetic
phase. Right: To observe antiferromagnetism, the unit cell has to be doubled,
resulting in a face centered cubic (fcc) lattice. A spin-density-wave gap �SDW

shows up in the antiferromagnetic state of an optical lattice with laser intensity
V0 = 4ER and scattering length a = 0.08d. Here, the high symmetry points are
� = (0, 0, 0), X = (0, ⇡/d, 0), L = (⇡/2d, ⇡/2d, ⇡/2d) and W = (⇡/2d, ⇡/d, 0).

To see antiferromagnetism competing with ferromagnetism at half band filling
n = 1 we need to consider a unit cell consisting of two lattice sites, and compare
the energies of antiferromagnetic and uniform configurations. We find, as shown
in figure 6.5(a), that antiferromagnetic ordering is preferred at intermediate in-
teraction strengths and half band filling, matching with the single band Hubbard
model physics that becomes valid in the upper left hand corner of the shown phase
diagram.

Last but not least, antiferromagnetic symmetry breaking opens up an additional
spin-density-wave (SDW) gap �SDW in the folded ground-state band as shown
in figure 6.5(b). This provides experimentalists an indirect method to probe for
antiferromagnetism in fermionic optical lattices.
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fcc lattice:

5.2 KS-DFT for fermionic optical lattice

Notation k-point
� (0, 0, 0)
X (1/2, 0, 0)
M (1/2, 1/2, 0)
R (1/2, 1/2, 1/2)

In the event of anistropy along the z-direction, some of the degeneracies within
the Oh point group are lifted, thus resulting in a D4h point group. Its symmetry
can be easily worked out from the respective character table [55].

5.2.3 Face centered cubic lattice
A primitive cell, consisting of two adjacent lattice sites within simple cubic (sc)
geometry, translates to form a face centered cubic (fcc) lattice, therefore resulting
in a body centered cubic (bcc) reciprocal lattice [29]. With M⇥M⇥M being the
dimensions of the optical lattice, the reciprocal lattice basis vectors read

b1 =
1

2
(x̂+ ŷ � ẑ) , b2 =

1

2
(x̂� ŷ + ẑ) , b3 =

1

2
(�x̂+ ŷ + ẑ) (5.28)

and the reciprocal lattice vectors are

G =
m1

M
b1 +

m2

M
b2 +

m3

M
b3 (5.29)

where m1,m2,m3 = 0,±1,±2, · · · . The band structure still possesses Oh point
group symmetry which facilitates the reduction of computational efforts greatly.
The high symmetry k-points in the band structure of the fcc lattice are

Notation k-point
� (0, 0, 0)
X (1/2, 0, 0)
W (1/4, 1/2, 0)
L (1/4, 1/4, 1/4)

For two identical sites within the primitive cell of a fcc lattice, its band structure
is in fact equivilant to the band structure of a sc lattice. More specifically in this
scenario, each energy band of a sc lattice are folded into two bands of a fcc lattice
about some highly symmetric k-planes.

56(due to symmetry reduction)

in the limit towards 
Hubbard model V0/ER = 4 , a/d = 8% :

-- qualitatively correct (AFM ground state) towards the 
   Hubbard limit.
-- AFM phase can be deduced indirectly by probing ΔSDW

-- Cooling towards GS is an experimental challenge! 
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Figure 6.3: KS-LSDA vs. HK-LSDA phase diagrams at fixed optical
lattice intensity V0. The red-color intensity indicates the polarization P for
optical lattice depths V0 = 4ER calculated by (a) KS-LSDA, and by (b) HK=LSDA
density functional theory. The green and blue curves indicate, respectively, the
transitions to partially and fully polarized phases in homogeneous systems (V0 =
0). The gray and yellow curves indicate the corresponding transitions in the optical
lattice. Ferromagnetism dominates in the region of large scattering length a, where
the non-trivial phase boundary arises due to the Kohn-Sham band theory, which
cannot be captured using HK-LSDA.
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Figure 6.4: Density of states. Results of Kohn-Sham DFT calculations at half-
filling n = ⇢d3 = 1 with optical lattice intensity V0 = 3ER and scattering length
a = 0.12d are shown indicated by the blue (red) symbols for the majority (minor-
ity) spin component. The density of states of the interacting gas is compared to
that of non-interacting species (black crosses), and that obtained in the HK-LSDA
method (green line), which shows no band gap. The Fermi level is at E = 0.
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Figure 6.3: KS-LSDA vs. HK-LSDA phase diagrams at fixed optical
lattice intensity V0. The red-color intensity indicates the polarization P for
optical lattice depths V0 = 4ER calculated by (a) KS-LSDA, and by (b) HK=LSDA
density functional theory. The green and blue curves indicate, respectively, the
transitions to partially and fully polarized phases in homogeneous systems (V0 =
0). The gray and yellow curves indicate the corresponding transitions in the optical
lattice. Ferromagnetism dominates in the region of large scattering length a, where
the non-trivial phase boundary arises due to the Kohn-Sham band theory, which
cannot be captured using HK-LSDA.
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Figure 6.4: Density of states. Results of Kohn-Sham DFT calculations at half-
filling n = ⇢d3 = 1 with optical lattice intensity V0 = 3ER and scattering length
a = 0.12d are shown indicated by the blue (red) symbols for the majority (minor-
ity) spin component. The density of states of the interacting gas is compared to
that of non-interacting species (black crosses), and that obtained in the HK-LSDA
method (green line), which shows no band gap. The Fermi level is at E = 0.
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Inadequacy of Hohenberg-Kohn DFT (HK-DFT):

Phase diagram:

Density-of-states:

Thursday, September 26, 13

mailto:bauerb@phys.ethz.ch
mailto:bauerb@phys.ethz.ch


Numerical simulations of bosons and fermions in three dimensional optical lattices.

Ping Nang MA - pingnang@phys.ethz.chSeptember 27, 2013 PhD oral examination, ETH Zurich

Thermometry
3.2 Fluctuation-dissipation thermometry

Figure 3.2: A single measurement of atom distribution for an ultracold quantum
gas held in a two-dimensional optical lattice. The bosons, indicated by bright
spots, are confined towards the parabolic trap centre. The interaction strength
U/t increases from left to right, and thus transiting the system from being a
superfluid into being a Mott insulator. Recent experimental advancement enables
good visualisation of the Mott plateau (middle) around the trap centre up to
single-site resolution. At extremely large interaction strength U/t, there exists a
high probability to locate 2 bosons per site in the vicinity around the trap centre.
However, current fluorescence experiments could not distinguish a doublon from
a hole, therefore indicating dark spots around the centre (right). This figure is
replicated from Nature 467, 68 (2010). [36]

3.2 Fluctuation-dissipation thermometry

3.2.1 Theory
The theory behind fluctuation-dissipation thermometry starts with the differenti-
ation of hn(⇢)i w.r.t. µ, i.e.

@hn(⇢)i
@µ

=
@

@µ

Z

dz
1

Z
Trn(r) exp[��(Ĥ � µN)]

=

Z

dz
1

Z
Tr �N n(r) exp[��(Ĥ � µN)]

�
Z

dz
1

Z2

⇣

Tr �N exp[��(Ĥ � µN)]
⌘⇣

Trn(r) exp[��(Ĥ � µN)]
⌘

= � (hn(⇢)Ni � hn(⇢)ihNi) (3.3)

30

0oC 

water

mercury thermometer

In-situ density images:
non-destructive measurement

Fluorescence experiment: a single measurement of atom distribution of bosons in an optical lattice. Single-site resolution

J. F. Sherson, et al, Nature 467, 68 (2010)

destructive measurement
Unable to distinguish a doublon

We can then collect a timeseries of density measurements, thereby able 
to evaluate density-related observables, for instance:

1.   average density        ,  i.e. <n(r)>
2.   density correlations ,  i.e. <n(r)n(r’)> - <n(r)> <n(r’)>
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Fluctuation-Dissipation Thermometry

Q. Zhou, T-L. Ho, 
Universal thermometry for quantum simulation,

Phys. Rev. Lett 106, 225301 (2011)

Fluctuation-dissipation theorem:

  

€ 

∂ n( r )
∂µ

= β n( r )N − n( r ) N[ ]

Local Density Approximation 
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Universal Thermometry for Quantum Simulation

Qi Zhou and Tin-Lun Ho
Department of Physics, The Ohio State University, Columbus, OH 43210

(Dated: August 24, 2009)

Quantum simulation is a highly ambitious program in cold atom research currently being pursued
in laboratories worldwide. The goal is to use cold atoms in optical lattice to simulate models for
unsolved strongly correlated systems, so as to deduce their properties directly from experimental
data. An important step in this effort is to determine the temperature of the system, which is
essential for deducing all thermodynamic functions. This step, however, remains difficult for lattice
systems at the moment. Here, we propose a method based on a generalized fluctuation-dissipation
theorem. It does not reply on numerical simulations and is a universal thermometry for all quantum
gases systems including mixtures and spinor gases. It is also unaffected by photon shot noise.

At present, there is worldwide experimental effort to
simulate theoretical models for strongly correlated quan-
tum systems using cold atoms in optical lattices. If suc-
cessful, these simulations can provide detailed thermo-
dynamic information for many models whose solutions
are unknown, even some of them (such as 2D Hubbard
model) have been studied for decades. To deduce the
thermodynamic properties of these models directly from
experiments, it is necessary to determine three quantities
accurately : density n, chemical potential µ, and tem-
perature T [1, 2]. The recent experiment of Cheng Chin’s
group[3] using in situ density profile to identify directly
the thermodynamic phases for boson Hubbard systems is
a very important step toward realizing the full power of
quantum simulation[1]. The prospect of this realization
is further enhanced by the impressive improvement in res-
olution of density imaging recently developed in Markus
Griener’s group[4]. The next crucial step is to have an
accurate temperature determination.

Often, the temperature of a lattice gas is estimated
by assuming the lattice is turned on adiabatically. One
then equate the entropy of the final state Sf (Tf ) to that
of the initial state Si(Ti), (i.e. the state before the lattice
is switched on), and then deduce the final temperature
Tf from the initial temperature Ti through this relation.
One factor detrimental to this procedure is the intrinsic
heating caused by spontaneous emission, which occurs as
the lattice is turned on, and during the time when exper-
iment is performed[5]. To make things worst, the entropy
function Sf (T ) of many systems of interest remains un-
known. So the errors of this method are uncontrolled[6].

For quantum gases in a single trap without optical lat-
tice, their temperatures can be deduced from the density
profile at the surface, which has the Boltzmann form.
In principle, one can apply the same method for lattice
quantum gases, as interaction effects becomes unimpor-
tant near the surface. However, an accurate determina-
tion of the density profile near the surface will require
improving the imaging resolution to a single site. It
will also require repeating the experiment many times
so as to achieve a good signal to noise ratio. To avoid
these demands, many experiments resort to the afore-

mentioned adiabatic assumption for temperature deter-
mination. However, due to the uncontrolled errors in
this method, it is desirable to have an alternative scheme
which is robust and free of all the problems mentioned
above. We also note that by studying the density at the
surface, one can not determine whether the entire sample
is in global equilibrium.

In this paper, we present a new scheme to determine
the temperature of trapped quantum gases based on the
fluctuation-dissipation theorem for non-uniform systems.
This method applies to all quantum gas systems (single
component gases, mixtures, spinor gases) and is unaf-
fected by background photon shot noise. It can also be
used to deduce magnetic susceptibility of bulk systems.
This method does not require numerical input, and can
tell whether the system is in global equilibrium.

A1. The proposal: We begin with two basic assump-
tions used in most experiments on quantum gases which
have been justified in many cases. The first is that the
density n(r) of a quantum gas in a trap V̂ (r) can be calcu-
lated in grand canonical ensemble , i.e. n(r) = n(r; T, µ),
where

n(r; T, µ) =
Trn̂(r)e−β(Ĥ+V̂ −µN̂)

Tre−β(Ĥ+V̂ −µN̂)
≡ 〈n̂(r)〉T,µ. (1)

where β = 1/(kBT ), Ĥ is the Hamiltonian without trap-
ping potential, T is the temperature and µ is the chemical
potential. The second is that n(r; T, µ) is given accu-
rately by local density approximation (LDA), i.e.

n(r; T, µ) = no(µ(r), T ), µ(r) = µ − V (r), (2)

where no(ν, T ) is the density of a homogeneous sys-
tem with hamiltonian Ĥ and chemical potential ν, i.e.
no(ν, T ) = Tre−β(Ĥ−νN̂)N̂/(ΩTre−β(Ĥ−νN̂)), and Ω is
the volume of the homogenous system. For lattice quan-
tum gases, LDA is justified if the variation of trapping
potential between neighboring sites is small compared
with the hopping matrix element. Eq.(1) implies

kBT
∂〈n̂(r)〉

∂µ
=

∫

dr′ [〈n̂(r)n̂(r′)〉 − 〈n̂(r)〉〈n̂(r′)〉] , (3)
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(Dated: August 24, 2009)

Quantum simulation is a highly ambitious program in cold atom research currently being pursued
in laboratories worldwide. The goal is to use cold atoms in optical lattice to simulate models for
unsolved strongly correlated systems, so as to deduce their properties directly from experimental
data. An important step in this effort is to determine the temperature of the system, which is
essential for deducing all thermodynamic functions. This step, however, remains difficult for lattice
systems at the moment. Here, we propose a method based on a generalized fluctuation-dissipation
theorem. It does not reply on numerical simulations and is a universal thermometry for all quantum
gases systems including mixtures and spinor gases. It is also unaffected by photon shot noise.

At present, there is worldwide experimental effort to
simulate theoretical models for strongly correlated quan-
tum systems using cold atoms in optical lattices. If suc-
cessful, these simulations can provide detailed thermo-
dynamic information for many models whose solutions
are unknown, even some of them (such as 2D Hubbard
model) have been studied for decades. To deduce the
thermodynamic properties of these models directly from
experiments, it is necessary to determine three quantities
accurately : density n, chemical potential µ, and tem-
perature T [1, 2]. The recent experiment of Cheng Chin’s
group[3] using in situ density profile to identify directly
the thermodynamic phases for boson Hubbard systems is
a very important step toward realizing the full power of
quantum simulation[1]. The prospect of this realization
is further enhanced by the impressive improvement in res-
olution of density imaging recently developed in Markus
Griener’s group[4]. The next crucial step is to have an
accurate temperature determination.

Often, the temperature of a lattice gas is estimated
by assuming the lattice is turned on adiabatically. One
then equate the entropy of the final state Sf (Tf ) to that
of the initial state Si(Ti), (i.e. the state before the lattice
is switched on), and then deduce the final temperature
Tf from the initial temperature Ti through this relation.
One factor detrimental to this procedure is the intrinsic
heating caused by spontaneous emission, which occurs as
the lattice is turned on, and during the time when exper-
iment is performed[5]. To make things worst, the entropy
function Sf (T ) of many systems of interest remains un-
known. So the errors of this method are uncontrolled[6].

For quantum gases in a single trap without optical lat-
tice, their temperatures can be deduced from the density
profile at the surface, which has the Boltzmann form.
In principle, one can apply the same method for lattice
quantum gases, as interaction effects becomes unimpor-
tant near the surface. However, an accurate determina-
tion of the density profile near the surface will require
improving the imaging resolution to a single site. It
will also require repeating the experiment many times
so as to achieve a good signal to noise ratio. To avoid
these demands, many experiments resort to the afore-

mentioned adiabatic assumption for temperature deter-
mination. However, due to the uncontrolled errors in
this method, it is desirable to have an alternative scheme
which is robust and free of all the problems mentioned
above. We also note that by studying the density at the
surface, one can not determine whether the entire sample
is in global equilibrium.

In this paper, we present a new scheme to determine
the temperature of trapped quantum gases based on the
fluctuation-dissipation theorem for non-uniform systems.
This method applies to all quantum gas systems (single
component gases, mixtures, spinor gases) and is unaf-
fected by background photon shot noise. It can also be
used to deduce magnetic susceptibility of bulk systems.
This method does not require numerical input, and can
tell whether the system is in global equilibrium.

A1. The proposal: We begin with two basic assump-
tions used in most experiments on quantum gases which
have been justified in many cases. The first is that the
density n(r) of a quantum gas in a trap V̂ (r) can be calcu-
lated in grand canonical ensemble , i.e. n(r) = n(r; T, µ),
where

n(r; T, µ) =
Trn̂(r)e−β(Ĥ+V̂ −µN̂)

Tre−β(Ĥ+V̂ −µN̂)
≡ 〈n̂(r)〉T,µ. (1)

where β = 1/(kBT ), Ĥ is the Hamiltonian without trap-
ping potential, T is the temperature and µ is the chemical
potential. The second is that n(r; T, µ) is given accu-
rately by local density approximation (LDA), i.e.

n(r; T, µ) = no(µ(r), T ), µ(r) = µ − V (r), (2)

where no(ν, T ) is the density of a homogeneous sys-
tem with hamiltonian Ĥ and chemical potential ν, i.e.
no(ν, T ) = Tre−β(Ĥ−νN̂)N̂/(ΩTre−β(Ĥ−νN̂)), and Ω is
the volume of the homogenous system. For lattice quan-
tum gases, LDA is justified if the variation of trapping
potential between neighboring sites is small compared
with the hopping matrix element. Eq.(1) implies

kBT
∂〈n̂(r)〉

∂µ
=

∫

dr′ [〈n̂(r)n̂(r′)〉 − 〈n̂(r)〉〈n̂(r′)〉] , (3)

, where 

(  V(r) = 1/2 Mω2r2 )

€ 

dµ(r)
dr

= −Mω 2r

€ 

δ n(r)
δµ(r)

= −
1

Mω 2r
∂ n(r)
∂r(Thereby, we have and .)

Universal Thermometry:

  

€ 

−
kB

Mω 2r
∂ n( r )
∂r

× T = n( r )N − n( r ) N
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L(r) × T = R(r)or :
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FIG. 3: Linear fit for {L(ρ),R(ρ)} to extract T . Blue dots are
the results of L(ρ) and R(ρ) from averaging 50 configurations.
Blue straight line is the fitting results. Red straight dashed
line represents the real temperature T = 0.1t.

〈..〉a,p) means averaging over these two independent dis-
tributions. In other words, the experimentally measured
density nex(r) = 〈n̂ex(r)〉a,p is

nex(r) = n(r) + c, n(r) = 〈n̂(r)〉a, c = 〈ν̂(r)〉p, (15)

where c the average of background photon shot noise,
which can be calibrated by taking images in the absence
of atoms. We shall also assume the short noise has no
significant spatial correlation, i.e.

〈ν(r)ν(r′)〉a = c2 + c1δ(r − r′), (16)

where c1 is shot noise fluctuation about its mean c.
Since the average noise c is independent of µ, we have

kBT
∂nex(r)

∂µ
= kBT

∂n(r)

∂µ
= 〈n̂(r)N̂ 〉a − n(r)N, (17)

N = 〈N̂〉a =
∫

drn(r). Next, consider the fluctu-

ations of measured density, Rex(r) = 〈n̂ex(r)N̂ex〉a,p

−〈n̂ex(r)〉a,p〈N̂ex〉a,p. We note that

〈n̂ex(r)N̂ex〉a,p = 〈(n̂(r) + ν̂(r))(N̂ +

∫

dr′ν̂(r′))〉a,p (18)

= 〈n̂(r)N̂ 〉a + cN + n(r)V c +

∫

dr′〈ν̂(r)ν̂(r′))〉p (19)

where V is the volume for photo collection; and

〈n̂ex(r)〉a,p〈N̂
ex〉a,p = (n(r) + c)(N + V c) (20)

= n(r)N + cN + n(r)V c + V c2. (21)

Subtracting Eq.(21) from (19), and using Eq.(16), we
have

Rex(r) = 〈n̂(r)N̂〉a − n(r)N + c1. (22)

Eq.(17) and (22) then imply

∂nex(r)

∂µ
= 〈n̂ex(r)N̂ex〉a,p − 〈n̂ex(r)〉a,p〈N̂

ex〉a,p − c1.

(23)

Eq.(9) then becomes

T = −

(

MωΩ(ρ)

kB

)

ζex(ρ)N − ζex(ρ) N − c1
∫ ρ+ε

ρ dsdηex(s)/ds
. (24)

In 3D, ζex(ρ) , ηex(ρ) and c1 shall be replaced by

aex(ρ) =
∫ ρ+ε

ρ dρ′ρ′
∫ 2π
0 dθ

∫

dz nex(ρ′, θ, z)/Ω(ρ) and

bex(ρ) =
∫ 2π
0 dθ

∫

dz nex(ρ, θ, z) and C1 =
∫

dz c1 respec-
tively.

Conclusion: We have shown that density fluctuation
is a powerful way to determine the temperature of a
trapped gas. It is clear from our derivation that this
method applies to other systems such as mixtures and
spinor gases. The fact that the temperature can be de-
termined by the fluctuation at every point in the sam-
ple provides considerable cross checks on the accuracy of
the result. Our method can also reveal situations where
different regions of the sample are in equilibrium within
themselves but not with each other. At present, all meth-
ods of thermometry requires the input of specific theo-
retical modeling. Our method replies only on thermody-
namics. It is therefore immune from errors of theoretical
modeling, and is in line with the true spirit of quantum
simulation, i.e. finding information of unsolved models
without specific theoretical input.
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systematic errors set in, and this results in nonlinear L(⇢)�R(⇢) behaviour, while
for ⇠ larger than the denisty-density correlation length, the behaviour of L(⇢)�R(⇢)
is linear. However, statistical noise also increases with increasing window size. The
parameters are the same as in figure 3.3.
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and the confinement strength VT are derived from the lattice
laser potential V0 through band-structure calculations [15].

To mimic in situ density measurements in ultracold bosonic
optical lattice experiments, we have performed QMC worm
simulations [16,17] (exact up to the statistical error bars)
and obtained a time series of three-dimensional (3D) density
measurements, which are then column integrated along the
line-of-sight direction. Uncorrelated measurements are ob-
tained by imposing a strict criterion for the autocorrelation
time τ < 0.2 on our simulation data used in subsequent
thermometry analysis.

Throughout this paper, we focus on a physical system of
125 000 87Rb atoms. We choose realistic parameters, using a
trapping frequency VT /t = 0.0091 for U/t = 10 and VT /t =
0.0277 for U/t = 50. For convenience, we use the lattice
spacing a = λ/2 as a unit of length.

III. THERMOMETRY SCHEME BASED
ON THE FD THEOREM

In this section, we illustrate how the FD theorem can
be turned into an effective temperature probe for ultracold
bosonic optical lattices, enabled by in situ density imaging
experiments [3,4]. Our approach is a generalization of the
proposal by Zhou and Ho [8]. It is based upon the 3D density,

〈n(r)〉 = 〈n(ρ,φ,z; T ,µ)〉 = Tr n̂(ρ,φ,z)e−β(Ĥ−µN̂ )

Tr e−β(Ĥ−µN̂)
, (2)

integrated along the line of sight 〈n(ρ)〉 =
∫

dz〈n(r)〉, and the
integrated density-density correlations,

Rξ (ρ)=
∫

dρ ′{〈n(ρ)n(ρ ′)〉 − 〈n(ρ)〉〈n(ρ ′)〉}θ (ξ − |ρ − ρ ′|),

(3)

within a window size ξ . Both quantities can be measured
directly from in situ density images. Here, r denotes a
coordinate in 3D parametrized in cylindrical coordinates as
r(ρ,φ,z), while ρ(ρ,φ) denotes the in-plane coordinate. θ (·)
is the Heaviside step function. Under the assumptions of the
validity of the local-density approximation (LDA) and a value
of ξ that is larger than the density-density correlation length,
the FD theorem takes the form T × L(ρ) = Rξ (ρ) where the
dissipation term,

L(ρ) =
(

∂〈n(ρ)〉
∂µ

)

T ,V

LDA= − 1
2VT

1
ρ

∂〈n(ρ)〉
∂ρ

(4)

can be computed in the way shown in Appendix A. The
LDA is a very good approximation for the density profile and
only breaks down in the vicinity of the critical point [18,19].
After averaging over the angular variable φ for radially
symmetric lattices [i.e., {L(ρ),R(ρ)} = 1

2π

∫
dφ{L(ρ),R(ρ)}],

the temperature T can be estimated from a least-squares fit
taking the measurement errors into account:

(
∑
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R2
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*2
Li
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(
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Li
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T̂ = −
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)

T̂ 3

+
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T̂ 4, (5)
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FIG. 1. (Color online) Illustration of the quantities entering
the FD thermometry formula. Shown from top to bottom are:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and
(5) fluctuation term (ξ = ∞) R∞(ρ). We take a 3D bosonic 87Rb
optical lattice system with N = 125 000, and we average over 1000
independent measurements obtained from a QMC simulation. The
parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

where *L and *R are the errors in L(ρ) and R(ρ), respectively.
Here, ρ is discretized into bins with width corresponding
to the experimental resolution. State-of-the-art experiments
allow us to set the bin width to unity, even though we find that
the scheme can tolerate a resolution of up to five sites (see
Appendix B) [3–7]. In the limit ξ → ∞, this scheme reduces
to the one by Zhou and Ho [8] in which the authors obtained
an estimate for the temperature in an optical lattice of 1200
noninteracting fermions with 3% error over 50 independent
samples for a temperature T/t = 0.1.

For fermions, both Refs. [9] and [10] suggested that the
FD theorem is an absolute thermometer in a harmonic trap
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and the confinement strength VT are derived from the lattice
laser potential V0 through band-structure calculations [15].

To mimic in situ density measurements in ultracold bosonic
optical lattice experiments, we have performed QMC worm
simulations [16,17] (exact up to the statistical error bars)
and obtained a time series of three-dimensional (3D) density
measurements, which are then column integrated along the
line-of-sight direction. Uncorrelated measurements are ob-
tained by imposing a strict criterion for the autocorrelation
time τ < 0.2 on our simulation data used in subsequent
thermometry analysis.

Throughout this paper, we focus on a physical system of
125 000 87Rb atoms. We choose realistic parameters, using a
trapping frequency VT /t = 0.0091 for U/t = 10 and VT /t =
0.0277 for U/t = 50. For convenience, we use the lattice
spacing a = λ/2 as a unit of length.

III. THERMOMETRY SCHEME BASED
ON THE FD THEOREM

In this section, we illustrate how the FD theorem can
be turned into an effective temperature probe for ultracold
bosonic optical lattices, enabled by in situ density imaging
experiments [3,4]. Our approach is a generalization of the
proposal by Zhou and Ho [8]. It is based upon the 3D density,

〈n(r)〉 = 〈n(ρ,φ,z; T ,µ)〉 = Tr n̂(ρ,φ,z)e−β(Ĥ−µN̂ )

Tr e−β(Ĥ−µN̂)
, (2)

integrated along the line of sight 〈n(ρ)〉 =
∫

dz〈n(r)〉, and the
integrated density-density correlations,

Rξ (ρ)=
∫

dρ ′{〈n(ρ)n(ρ ′)〉 − 〈n(ρ)〉〈n(ρ ′)〉}θ (ξ − |ρ − ρ ′|),

(3)

within a window size ξ . Both quantities can be measured
directly from in situ density images. Here, r denotes a
coordinate in 3D parametrized in cylindrical coordinates as
r(ρ,φ,z), while ρ(ρ,φ) denotes the in-plane coordinate. θ (·)
is the Heaviside step function. Under the assumptions of the
validity of the local-density approximation (LDA) and a value
of ξ that is larger than the density-density correlation length,
the FD theorem takes the form T × L(ρ) = Rξ (ρ) where the
dissipation term,

L(ρ) =
(

∂〈n(ρ)〉
∂µ

)

T ,V

LDA= − 1
2VT

1
ρ

∂〈n(ρ)〉
∂ρ

(4)

can be computed in the way shown in Appendix A. The
LDA is a very good approximation for the density profile and
only breaks down in the vicinity of the critical point [18,19].
After averaging over the angular variable φ for radially
symmetric lattices [i.e., {L(ρ),R(ρ)} = 1

2π

∫
dφ{L(ρ),R(ρ)}],

the temperature T can be estimated from a least-squares fit
taking the measurement errors into account:
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FIG. 1. (Color online) Illustration of the quantities entering
the FD thermometry formula. Shown from top to bottom are:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and
(5) fluctuation term (ξ = ∞) R∞(ρ). We take a 3D bosonic 87Rb
optical lattice system with N = 125 000, and we average over 1000
independent measurements obtained from a QMC simulation. The
parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

where *L and *R are the errors in L(ρ) and R(ρ), respectively.
Here, ρ is discretized into bins with width corresponding
to the experimental resolution. State-of-the-art experiments
allow us to set the bin width to unity, even though we find that
the scheme can tolerate a resolution of up to five sites (see
Appendix B) [3–7]. In the limit ξ → ∞, this scheme reduces
to the one by Zhou and Ho [8] in which the authors obtained
an estimate for the temperature in an optical lattice of 1200
noninteracting fermions with 3% error over 50 independent
samples for a temperature T/t = 0.1.

For fermions, both Refs. [9] and [10] suggested that the
FD theorem is an absolute thermometer in a harmonic trap
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and the confinement strength VT are derived from the lattice
laser potential V0 through band-structure calculations [15].

To mimic in situ density measurements in ultracold bosonic
optical lattice experiments, we have performed QMC worm
simulations [16,17] (exact up to the statistical error bars)
and obtained a time series of three-dimensional (3D) density
measurements, which are then column integrated along the
line-of-sight direction. Uncorrelated measurements are ob-
tained by imposing a strict criterion for the autocorrelation
time τ < 0.2 on our simulation data used in subsequent
thermometry analysis.

Throughout this paper, we focus on a physical system of
125 000 87Rb atoms. We choose realistic parameters, using a
trapping frequency VT /t = 0.0091 for U/t = 10 and VT /t =
0.0277 for U/t = 50. For convenience, we use the lattice
spacing a = λ/2 as a unit of length.

III. THERMOMETRY SCHEME BASED
ON THE FD THEOREM

In this section, we illustrate how the FD theorem can
be turned into an effective temperature probe for ultracold
bosonic optical lattices, enabled by in situ density imaging
experiments [3,4]. Our approach is a generalization of the
proposal by Zhou and Ho [8]. It is based upon the 3D density,

〈n(r)〉 = 〈n(ρ,φ,z; T ,µ)〉 = Tr n̂(ρ,φ,z)e−β(Ĥ−µN̂ )

Tr e−β(Ĥ−µN̂)
, (2)

integrated along the line of sight 〈n(ρ)〉 =
∫

dz〈n(r)〉, and the
integrated density-density correlations,

Rξ (ρ)=
∫

dρ ′{〈n(ρ)n(ρ ′)〉 − 〈n(ρ)〉〈n(ρ ′)〉}θ (ξ − |ρ − ρ ′|),

(3)

within a window size ξ . Both quantities can be measured
directly from in situ density images. Here, r denotes a
coordinate in 3D parametrized in cylindrical coordinates as
r(ρ,φ,z), while ρ(ρ,φ) denotes the in-plane coordinate. θ (·)
is the Heaviside step function. Under the assumptions of the
validity of the local-density approximation (LDA) and a value
of ξ that is larger than the density-density correlation length,
the FD theorem takes the form T × L(ρ) = Rξ (ρ) where the
dissipation term,

L(ρ) =
(
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∂ρ

(4)

can be computed in the way shown in Appendix A. The
LDA is a very good approximation for the density profile and
only breaks down in the vicinity of the critical point [18,19].
After averaging over the angular variable φ for radially
symmetric lattices [i.e., {L(ρ),R(ρ)} = 1

2π

∫
dφ{L(ρ),R(ρ)}],

the temperature T can be estimated from a least-squares fit
taking the measurement errors into account:
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FIG. 1. (Color online) Illustration of the quantities entering
the FD thermometry formula. Shown from top to bottom are:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and
(5) fluctuation term (ξ = ∞) R∞(ρ). We take a 3D bosonic 87Rb
optical lattice system with N = 125 000, and we average over 1000
independent measurements obtained from a QMC simulation. The
parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

where *L and *R are the errors in L(ρ) and R(ρ), respectively.
Here, ρ is discretized into bins with width corresponding
to the experimental resolution. State-of-the-art experiments
allow us to set the bin width to unity, even though we find that
the scheme can tolerate a resolution of up to five sites (see
Appendix B) [3–7]. In the limit ξ → ∞, this scheme reduces
to the one by Zhou and Ho [8] in which the authors obtained
an estimate for the temperature in an optical lattice of 1200
noninteracting fermions with 3% error over 50 independent
samples for a temperature T/t = 0.1.

For fermions, both Refs. [9] and [10] suggested that the
FD theorem is an absolute thermometer in a harmonic trap
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and the confinement strength VT are derived from the lattice
laser potential V0 through band-structure calculations [15].

To mimic in situ density measurements in ultracold bosonic
optical lattice experiments, we have performed QMC worm
simulations [16,17] (exact up to the statistical error bars)
and obtained a time series of three-dimensional (3D) density
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line-of-sight direction. Uncorrelated measurements are ob-
tained by imposing a strict criterion for the autocorrelation
time τ < 0.2 on our simulation data used in subsequent
thermometry analysis.

Throughout this paper, we focus on a physical system of
125 000 87Rb atoms. We choose realistic parameters, using a
trapping frequency VT /t = 0.0091 for U/t = 10 and VT /t =
0.0277 for U/t = 50. For convenience, we use the lattice
spacing a = λ/2 as a unit of length.

III. THERMOMETRY SCHEME BASED
ON THE FD THEOREM

In this section, we illustrate how the FD theorem can
be turned into an effective temperature probe for ultracold
bosonic optical lattices, enabled by in situ density imaging
experiments [3,4]. Our approach is a generalization of the
proposal by Zhou and Ho [8]. It is based upon the 3D density,
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Tr e−β(Ĥ−µN̂)
, (2)
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within a window size ξ . Both quantities can be measured
directly from in situ density images. Here, r denotes a
coordinate in 3D parametrized in cylindrical coordinates as
r(ρ,φ,z), while ρ(ρ,φ) denotes the in-plane coordinate. θ (·)
is the Heaviside step function. Under the assumptions of the
validity of the local-density approximation (LDA) and a value
of ξ that is larger than the density-density correlation length,
the FD theorem takes the form T × L(ρ) = Rξ (ρ) where the
dissipation term,

L(ρ) =
(

∂〈n(ρ)〉
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)

T ,V

LDA= − 1
2VT

1
ρ

∂〈n(ρ)〉
∂ρ

(4)

can be computed in the way shown in Appendix A. The
LDA is a very good approximation for the density profile and
only breaks down in the vicinity of the critical point [18,19].
After averaging over the angular variable φ for radially
symmetric lattices [i.e., {L(ρ),R(ρ)} = 1

2π

∫
dφ{L(ρ),R(ρ)}],

the temperature T can be estimated from a least-squares fit
taking the measurement errors into account:
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FIG. 1. (Color online) Illustration of the quantities entering
the FD thermometry formula. Shown from top to bottom are:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and
(5) fluctuation term (ξ = ∞) R∞(ρ). We take a 3D bosonic 87Rb
optical lattice system with N = 125 000, and we average over 1000
independent measurements obtained from a QMC simulation. The
parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

where *L and *R are the errors in L(ρ) and R(ρ), respectively.
Here, ρ is discretized into bins with width corresponding
to the experimental resolution. State-of-the-art experiments
allow us to set the bin width to unity, even though we find that
the scheme can tolerate a resolution of up to five sites (see
Appendix B) [3–7]. In the limit ξ → ∞, this scheme reduces
to the one by Zhou and Ho [8] in which the authors obtained
an estimate for the temperature in an optical lattice of 1200
noninteracting fermions with 3% error over 50 independent
samples for a temperature T/t = 0.1.

For fermions, both Refs. [9] and [10] suggested that the
FD theorem is an absolute thermometer in a harmonic trap
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where the 3D density is integrated along the line-of-sight:
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FIG. 2. (Color online) Illustration of the FD thermometry scheme
by showing different L(ρ)-Rξ (ρ) plots at various window sizes
ξ = 0,1,2,3,5,∞. This approach illustrates how the density-density
correlation length can be found in an experimental system. When
the window size is smaller than density-density correlation length,
systematic errors set in, and this results in nonlinear L(ρ)-R(ρ)
behavior, while for ξ larger than the density-density correlation
length, the behavior of L(ρ)-R(ρ) is linear. However, statistical noise
also increases with increasing window size. We take a 3D bosonic
87Rb optical lattice system with N = 125 000, and we average over
1000 independent measurements obtained from a QMC simulation.
The parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

without lattice, through careful normalization [9] of R∞(ρ),
However, for the small number O(105) − O(106) of fermions
in their experiments, the estimated temperature deviated from
the time-of-flight measurements by about 30% [10].

TABLE I. Number of uncorrelated shots needed to obtain 5%
error in 3D 87Rb optical lattice experiments trapping 125 000 bosons
with bin width = 1.0 at U/t = 10 and U/t = 50. The variance
reduction through window sizing leads to orders-of-magnitude
improvement.

Number of shots

System ξ = 3 ξ = ∞

U/t = 10, T/t = 1 20 O(104)
U/t = 10, T/t = 3 14 O(104)
U/t = 50, T/t = 1 21 O(104)
U/t = 50, T/t = 3 12 O(104)

For bosonic optical lattices, our scheme is illustrated in
Figs. 1 and 2 for the temperature of T/t = 1, whereby a
window size of ξ = 3 is sufficient to capture (almost) all
the correlations. Using ξ = 3 as the standard for T/t = 1
and higher temperatures, we show the number of independent
measurements needed to estimate the temperature within 5%
error in Table I.The enormous variance reduction through win-
dow sizing turns the FD thermometry scheme into a feasible
tool for ultracold bosonic optical lattice experiments. With
20 independent shots uniformly distributed over 20% spread
in T and 1% spread in N , this scheme remains applicable
(see Appendix C). At lower temperature, the scheme remains
valid, although a larger ξ is needed, and the statistical noise
will inevitably grow. An example of T/t = 0.5 is shown in
Fig. 3 where the correlations are effectively captured by a
window size of ξ = 5, and 100 independent measurements are
required to attain an accurate temperature estimate with 5%
error. Current optical lattice experiments using fluorescence
techniques can only measure the parity (even-odd) of the
occupation number per site. This affects the FD thermometry
scheme, as illustrated in Fig. 4, but through selection of those
points in the L(ρ)-Rξ (ρ) that are on the linear slope, we
could still obtain an acceptable estimate of the temperature.
Deep in the edges, the number of doublons is very low
compared to the number of holes due to the low overall density
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FIG. 3. (Color online) FD thermometry scheme at slightly lower
temperature. We take a 3D bosonic 87Rb optical lattice system with
parameters N = 125 000, U/t = 10, T/t = 0.5, and ξ = 5, and we
average over 100 independent measurements obtained from a QMC
simulation.
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FIG. 2. (Color online) Illustration of the FD thermometry scheme
by showing different L(ρ)-Rξ (ρ) plots at various window sizes
ξ = 0,1,2,3,5,∞. This approach illustrates how the density-density
correlation length can be found in an experimental system. When
the window size is smaller than density-density correlation length,
systematic errors set in, and this results in nonlinear L(ρ)-R(ρ)
behavior, while for ξ larger than the density-density correlation
length, the behavior of L(ρ)-R(ρ) is linear. However, statistical noise
also increases with increasing window size. We take a 3D bosonic
87Rb optical lattice system with N = 125 000, and we average over
1000 independent measurements obtained from a QMC simulation.
The parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

without lattice, through careful normalization [9] of R∞(ρ),
However, for the small number O(105) − O(106) of fermions
in their experiments, the estimated temperature deviated from
the time-of-flight measurements by about 30% [10].

TABLE I. Number of uncorrelated shots needed to obtain 5%
error in 3D 87Rb optical lattice experiments trapping 125 000 bosons
with bin width = 1.0 at U/t = 10 and U/t = 50. The variance
reduction through window sizing leads to orders-of-magnitude
improvement.

Number of shots

System ξ = 3 ξ = ∞

U/t = 10, T/t = 1 20 O(104)
U/t = 10, T/t = 3 14 O(104)
U/t = 50, T/t = 1 21 O(104)
U/t = 50, T/t = 3 12 O(104)

For bosonic optical lattices, our scheme is illustrated in
Figs. 1 and 2 for the temperature of T/t = 1, whereby a
window size of ξ = 3 is sufficient to capture (almost) all
the correlations. Using ξ = 3 as the standard for T/t = 1
and higher temperatures, we show the number of independent
measurements needed to estimate the temperature within 5%
error in Table I.The enormous variance reduction through win-
dow sizing turns the FD thermometry scheme into a feasible
tool for ultracold bosonic optical lattice experiments. With
20 independent shots uniformly distributed over 20% spread
in T and 1% spread in N , this scheme remains applicable
(see Appendix C). At lower temperature, the scheme remains
valid, although a larger ξ is needed, and the statistical noise
will inevitably grow. An example of T/t = 0.5 is shown in
Fig. 3 where the correlations are effectively captured by a
window size of ξ = 5, and 100 independent measurements are
required to attain an accurate temperature estimate with 5%
error. Current optical lattice experiments using fluorescence
techniques can only measure the parity (even-odd) of the
occupation number per site. This affects the FD thermometry
scheme, as illustrated in Fig. 4, but through selection of those
points in the L(ρ)-Rξ (ρ) that are on the linear slope, we
could still obtain an acceptable estimate of the temperature.
Deep in the edges, the number of doublons is very low
compared to the number of holes due to the low overall density
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FIG. 3. (Color online) FD thermometry scheme at slightly lower
temperature. We take a 3D bosonic 87Rb optical lattice system with
parameters N = 125 000, U/t = 10, T/t = 0.5, and ξ = 5, and we
average over 100 independent measurements obtained from a QMC
simulation.
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FIG. 2. (Color online) Illustration of the FD thermometry scheme
by showing different L(ρ)-Rξ (ρ) plots at various window sizes
ξ = 0,1,2,3,5,∞. This approach illustrates how the density-density
correlation length can be found in an experimental system. When
the window size is smaller than density-density correlation length,
systematic errors set in, and this results in nonlinear L(ρ)-R(ρ)
behavior, while for ξ larger than the density-density correlation
length, the behavior of L(ρ)-R(ρ) is linear. However, statistical noise
also increases with increasing window size. We take a 3D bosonic
87Rb optical lattice system with N = 125 000, and we average over
1000 independent measurements obtained from a QMC simulation.
The parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

without lattice, through careful normalization [9] of R∞(ρ),
However, for the small number O(105) − O(106) of fermions
in their experiments, the estimated temperature deviated from
the time-of-flight measurements by about 30% [10].

TABLE I. Number of uncorrelated shots needed to obtain 5%
error in 3D 87Rb optical lattice experiments trapping 125 000 bosons
with bin width = 1.0 at U/t = 10 and U/t = 50. The variance
reduction through window sizing leads to orders-of-magnitude
improvement.

Number of shots

System ξ = 3 ξ = ∞

U/t = 10, T/t = 1 20 O(104)
U/t = 10, T/t = 3 14 O(104)
U/t = 50, T/t = 1 21 O(104)
U/t = 50, T/t = 3 12 O(104)

For bosonic optical lattices, our scheme is illustrated in
Figs. 1 and 2 for the temperature of T/t = 1, whereby a
window size of ξ = 3 is sufficient to capture (almost) all
the correlations. Using ξ = 3 as the standard for T/t = 1
and higher temperatures, we show the number of independent
measurements needed to estimate the temperature within 5%
error in Table I.The enormous variance reduction through win-
dow sizing turns the FD thermometry scheme into a feasible
tool for ultracold bosonic optical lattice experiments. With
20 independent shots uniformly distributed over 20% spread
in T and 1% spread in N , this scheme remains applicable
(see Appendix C). At lower temperature, the scheme remains
valid, although a larger ξ is needed, and the statistical noise
will inevitably grow. An example of T/t = 0.5 is shown in
Fig. 3 where the correlations are effectively captured by a
window size of ξ = 5, and 100 independent measurements are
required to attain an accurate temperature estimate with 5%
error. Current optical lattice experiments using fluorescence
techniques can only measure the parity (even-odd) of the
occupation number per site. This affects the FD thermometry
scheme, as illustrated in Fig. 4, but through selection of those
points in the L(ρ)-Rξ (ρ) that are on the linear slope, we
could still obtain an acceptable estimate of the temperature.
Deep in the edges, the number of doublons is very low
compared to the number of holes due to the low overall density
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FIG. 3. (Color online) FD thermometry scheme at slightly lower
temperature. We take a 3D bosonic 87Rb optical lattice system with
parameters N = 125 000, U/t = 10, T/t = 0.5, and ξ = 5, and we
average over 100 independent measurements obtained from a QMC
simulation.
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-- Statistical noise is drastically reduced.

-- Fluctuation-dissipation thermometry will remain a feasible tool so long as the 
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FIG. 2. (Color online) Illustration of the FD thermometry scheme
by showing different L(ρ)-Rξ (ρ) plots at various window sizes
ξ = 0,1,2,3,5,∞. This approach illustrates how the density-density
correlation length can be found in an experimental system. When
the window size is smaller than density-density correlation length,
systematic errors set in, and this results in nonlinear L(ρ)-R(ρ)
behavior, while for ξ larger than the density-density correlation
length, the behavior of L(ρ)-R(ρ) is linear. However, statistical noise
also increases with increasing window size. We take a 3D bosonic
87Rb optical lattice system with N = 125 000, and we average over
1000 independent measurements obtained from a QMC simulation.
The parameters in the left column are U/t = 10, T/t = 1, and the
parameters in the right column are U/t = 50, T/t = 1.

without lattice, through careful normalization [9] of R∞(ρ),
However, for the small number O(105) − O(106) of fermions
in their experiments, the estimated temperature deviated from
the time-of-flight measurements by about 30% [10].

TABLE I. Number of uncorrelated shots needed to obtain 5%
error in 3D 87Rb optical lattice experiments trapping 125 000 bosons
with bin width = 1.0 at U/t = 10 and U/t = 50. The variance
reduction through window sizing leads to orders-of-magnitude
improvement.

Number of shots

System ξ = 3 ξ = ∞

U/t = 10, T/t = 1 20 O(104)
U/t = 10, T/t = 3 14 O(104)
U/t = 50, T/t = 1 21 O(104)
U/t = 50, T/t = 3 12 O(104)

For bosonic optical lattices, our scheme is illustrated in
Figs. 1 and 2 for the temperature of T/t = 1, whereby a
window size of ξ = 3 is sufficient to capture (almost) all
the correlations. Using ξ = 3 as the standard for T/t = 1
and higher temperatures, we show the number of independent
measurements needed to estimate the temperature within 5%
error in Table I.The enormous variance reduction through win-
dow sizing turns the FD thermometry scheme into a feasible
tool for ultracold bosonic optical lattice experiments. With
20 independent shots uniformly distributed over 20% spread
in T and 1% spread in N , this scheme remains applicable
(see Appendix C). At lower temperature, the scheme remains
valid, although a larger ξ is needed, and the statistical noise
will inevitably grow. An example of T/t = 0.5 is shown in
Fig. 3 where the correlations are effectively captured by a
window size of ξ = 5, and 100 independent measurements are
required to attain an accurate temperature estimate with 5%
error. Current optical lattice experiments using fluorescence
techniques can only measure the parity (even-odd) of the
occupation number per site. This affects the FD thermometry
scheme, as illustrated in Fig. 4, but through selection of those
points in the L(ρ)-Rξ (ρ) that are on the linear slope, we
could still obtain an acceptable estimate of the temperature.
Deep in the edges, the number of doublons is very low
compared to the number of holes due to the low overall density
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FIG. 3. (Color online) FD thermometry scheme at slightly lower
temperature. We take a 3D bosonic 87Rb optical lattice system with
parameters N = 125 000, U/t = 10, T/t = 0.5, and ξ = 5, and we
average over 100 independent measurements obtained from a QMC
simulation.
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FIG. 8. (Color online) The FD thermometry scheme remains applicable to in situ density experiments, which have a resolution of a
few sites. The system consists of a 3D optical lattice with N = 125 000 bosonic 87Rb atoms. Increasing the bin width from 1.0 to 5.0 in
steps of 1.0 increases the systematic error in the dissipation term L(ρ), but the temperature estimate remains reliable. Top panels show the
dissipation term L(ρ), and bottom panels show the L(ρ) vs the R(ρ) curves. The parameters in the left column are U/t = 10, T/t = 1, and
in the right column, U/t = 50, T/t = 1, with a window size ξ = 3. We average over 1000 independent measurements obtained from a QMC
simulation.

measurements are sufficient in order to extract the temperature
reliably and accurately under the condition that the shape of
the chemical potential landscape is known, the system is in
thermodynamic equilibrium, and that the LDA holds.

TABLE III. The estimated temperatures obtained in simulations
for various resolutions. We take a 3D optical lattice system with
N = 125 000 87Rb atoms and a window size ξ = 3. We average over
1000 independent measurements obtained from a QMC simulation.
In the top panel, U/t = 10, T/t = 1; in the bottom panel, U/t =
50, T/t = 1. The estimated temperatures do not deviate more than
10% despite the systematic error involved.

n-site resolution Estimated temperature
(bin width) (units of t)

(U/t = 10, T/t = 1)
1 0.977 ± 0.007
2 0.990 ± 0.006
3 0.997 ± 0.006
4 1.016 ± 0.007
5 1.048 ± 0.007

(U/t = 50, T/t = 1)
1 0.994 ± 0.008
2 1.014 ± 0.007
3 1.032 ± 0.007
4 1.045 ± 0.008
5 1.094 ± 0.008

Using more theoretical input, such as density profiles
obtained in HTE2, the temperature can already be obtained
from the normal edges sometimes with a single measurement.
In cases where the normal region on the edge is too narrow, one
can either go to higher order in the high-temperature expansion
or experimentally shape the trap to obtain a wider normal
region.
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APPENDIX A: NUMERICAL APPROXIMATION TO THE
DENSITY DERIVATIVE

In the dissipation term,

L(ρ) = − 1
2VT

1
ρ

∂〈n(ρ)〉
∂ρ

, (A1)
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Fluorescence experiments can only detect parity densities
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FIG. 4. (Color online) FD thermometry scheme in the presence
of doublon-hole indistinguishability. From top to bottom are shown:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and (5)
L(ρ)-R3(ρ) relationship. We take a 3D bosonic 87Rb optical lattice
system with N = 125 000, and we average over 1000 independent
measurements obtained from a QMC simulation. In the left column,
the parameters are U/t = 10, T/t = 1, and in the right column,
the parameters are U/t = 50, T/t = 1. Blue circles (green squares)
show the curve where doublons can (cannot) be distinguished from
holes.

and the high potential-energy cost of creating a doublon.
(See Table II.)

IV. HTE2

In this section, we propose an alternative scheme for
thermometry based on HTE2. Deep enough in the edges,
there will always be a normal region for any temperature and
interaction strength where the system is well described by

TABLE II. The estimated temperature for a 3D bosonic 87Rb
optical lattice system in the presence of doublon-hole indistin-
guishability. The parameters are N = 125 000, bin width = 1.0,
ξ = 3 at U/t = 10, 50, and T/t = 1. We average over 1000
uncorrelated measurements obtained from a QMC simulation.

Estimated temperature
System (units of t)

U/t = 10, T/t = 1 0.985 ± 0.008
U/t = 50, T/t = 1 1.003 ± 0.012

HTE2. One advantage of this scheme is that it works not only
for integrated column densities, but also for density profiles
measured only in two-dimensional (2D) cross sections of a 3D
system [20]. In addition, this scheme allows determination of
the chemical potential.

In practice, a single shot will suffice to extract the quantities
of interest. When HTE2 applies, it also gives a foundation
for the limit on the small window size ξ for the former FD
thermometry scheme (indeed, there is no point in applying
the FD scheme whenever HTE2 works). It is possible to use
higher-order schemes other than HTE2, but we find that the
gain is minimal compared to the additional effort. However, it
may be that the density in the edges is so low that it cannot be
measured because of the low signal-to-noise ratio, which will
happen for very low temperatures. In this section, we wish to
make these ideas more quantitative.

In the absence of correlations, the density 〈n(0)
i 〉 is captured

by the zeroth-order high-temperature expansion theory and is
given by

〈
n

(0)
i

〉
= 1

Z
(0)
i

∑

{ni }
nie

−β(Di−µini ), (6)
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FIG. 5. (Color online) Illustrating the concept of wing thermom-
etry for a 3D bosonic 87Rb optical lattice system (i.e., describing
the normal state by high-temperature series expansions). Blue
circles: In situ density profile obtained from 100 uncorrelated
measurements obtained by a QMC simulation with parameters
U/t = 10, T/t = 3, and N = 125 000. The superfluid-normal phase
boundary occurs at the density 〈n〉 = 0.42 or chemical potential
µ/t = −2.75. The second-order series captures all the physics in
the normal regime, whereas the zeroth order has a very small validity
range.
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FIG. 4. (Color online) FD thermometry scheme in the presence
of doublon-hole indistinguishability. From top to bottom are shown:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and (5)
L(ρ)-R3(ρ) relationship. We take a 3D bosonic 87Rb optical lattice
system with N = 125 000, and we average over 1000 independent
measurements obtained from a QMC simulation. In the left column,
the parameters are U/t = 10, T/t = 1, and in the right column,
the parameters are U/t = 50, T/t = 1. Blue circles (green squares)
show the curve where doublons can (cannot) be distinguished from
holes.

and the high potential-energy cost of creating a doublon.
(See Table II.)

IV. HTE2

In this section, we propose an alternative scheme for
thermometry based on HTE2. Deep enough in the edges,
there will always be a normal region for any temperature and
interaction strength where the system is well described by

TABLE II. The estimated temperature for a 3D bosonic 87Rb
optical lattice system in the presence of doublon-hole indistin-
guishability. The parameters are N = 125 000, bin width = 1.0,
ξ = 3 at U/t = 10, 50, and T/t = 1. We average over 1000
uncorrelated measurements obtained from a QMC simulation.

Estimated temperature
System (units of t)

U/t = 10, T/t = 1 0.985 ± 0.008
U/t = 50, T/t = 1 1.003 ± 0.012

HTE2. One advantage of this scheme is that it works not only
for integrated column densities, but also for density profiles
measured only in two-dimensional (2D) cross sections of a 3D
system [20]. In addition, this scheme allows determination of
the chemical potential.

In practice, a single shot will suffice to extract the quantities
of interest. When HTE2 applies, it also gives a foundation
for the limit on the small window size ξ for the former FD
thermometry scheme (indeed, there is no point in applying
the FD scheme whenever HTE2 works). It is possible to use
higher-order schemes other than HTE2, but we find that the
gain is minimal compared to the additional effort. However, it
may be that the density in the edges is so low that it cannot be
measured because of the low signal-to-noise ratio, which will
happen for very low temperatures. In this section, we wish to
make these ideas more quantitative.

In the absence of correlations, the density 〈n(0)
i 〉 is captured

by the zeroth-order high-temperature expansion theory and is
given by

〈
n

(0)
i

〉
= 1

Z
(0)
i

∑

{ni }
nie

−β(Di−µini ), (6)

0 10 20 30 40 50 60
r

0

0.5

1

1.5

2

n(
r) U/t=10.0, T/t=3.0

0
th

 order (true)
2

nd
 order (true)

normal regionsuperfluid region

Tc/t (U/t=10.0, <n>=0.42) ~ 3.0

(LDA) (LDA)

FIG. 5. (Color online) Illustrating the concept of wing thermom-
etry for a 3D bosonic 87Rb optical lattice system (i.e., describing
the normal state by high-temperature series expansions). Blue
circles: In situ density profile obtained from 100 uncorrelated
measurements obtained by a QMC simulation with parameters
U/t = 10, T/t = 3, and N = 125 000. The superfluid-normal phase
boundary occurs at the density 〈n〉 = 0.42 or chemical potential
µ/t = −2.75. The second-order series captures all the physics in
the normal regime, whereas the zeroth order has a very small validity
range.
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FIG. 4. (Color online) FD thermometry scheme in the presence
of doublon-hole indistinguishability. From top to bottom are shown:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and (5)
L(ρ)-R3(ρ) relationship. We take a 3D bosonic 87Rb optical lattice
system with N = 125 000, and we average over 1000 independent
measurements obtained from a QMC simulation. In the left column,
the parameters are U/t = 10, T/t = 1, and in the right column,
the parameters are U/t = 50, T/t = 1. Blue circles (green squares)
show the curve where doublons can (cannot) be distinguished from
holes.

and the high potential-energy cost of creating a doublon.
(See Table II.)

IV. HTE2

In this section, we propose an alternative scheme for
thermometry based on HTE2. Deep enough in the edges,
there will always be a normal region for any temperature and
interaction strength where the system is well described by

TABLE II. The estimated temperature for a 3D bosonic 87Rb
optical lattice system in the presence of doublon-hole indistin-
guishability. The parameters are N = 125 000, bin width = 1.0,
ξ = 3 at U/t = 10, 50, and T/t = 1. We average over 1000
uncorrelated measurements obtained from a QMC simulation.

Estimated temperature
System (units of t)

U/t = 10, T/t = 1 0.985 ± 0.008
U/t = 50, T/t = 1 1.003 ± 0.012

HTE2. One advantage of this scheme is that it works not only
for integrated column densities, but also for density profiles
measured only in two-dimensional (2D) cross sections of a 3D
system [20]. In addition, this scheme allows determination of
the chemical potential.

In practice, a single shot will suffice to extract the quantities
of interest. When HTE2 applies, it also gives a foundation
for the limit on the small window size ξ for the former FD
thermometry scheme (indeed, there is no point in applying
the FD scheme whenever HTE2 works). It is possible to use
higher-order schemes other than HTE2, but we find that the
gain is minimal compared to the additional effort. However, it
may be that the density in the edges is so low that it cannot be
measured because of the low signal-to-noise ratio, which will
happen for very low temperatures. In this section, we wish to
make these ideas more quantitative.

In the absence of correlations, the density 〈n(0)
i 〉 is captured

by the zeroth-order high-temperature expansion theory and is
given by

〈
n

(0)
i

〉
= 1

Z
(0)
i
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{ni }
nie

−β(Di−µini ), (6)
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FIG. 5. (Color online) Illustrating the concept of wing thermom-
etry for a 3D bosonic 87Rb optical lattice system (i.e., describing
the normal state by high-temperature series expansions). Blue
circles: In situ density profile obtained from 100 uncorrelated
measurements obtained by a QMC simulation with parameters
U/t = 10, T/t = 3, and N = 125 000. The superfluid-normal phase
boundary occurs at the density 〈n〉 = 0.42 or chemical potential
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where the zeroth-order partition function Z
(0)
i is

Z
(0)
i =

∑

{ni }
e−β(Di−µini ), (7)

and the on-site diagonal energy Di is

Di = U

2
ni(ni − 1). (8)

The zeroth-order expansion, suggested in Ref. [11], does
a rather poor job in describing the edges of the system, as
illustrated in Fig. 5. However, sufficient accuracy over a wide
density range in present-day experiments is found by implying
the second-order [up to (βt)2] partition function,

Z = Z(0)(1 + Z(2)), (9)
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lattice system with bosonic 87Rb atoms and parameters N = 125 000,
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(δ)
j + 1) + (µi − µj ). The temperature

is found by fitting the cross-sectional experiment in situ density
measurement against the density found in HTE2,
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where δni = ni − 〈n(0)
i 〉. HTE2 gives a fairly accurate descrip-

tion of the edges in present experiments. In practice, one should
fit from some distance r1 until the end of the trap, and vary r1
in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.

If the entire regime of the bosonic optical lattice is
in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
shown in Fig. 7.

V. CONCLUSIONS

We have discussed how single-site resolution detection
tools can be used to obtain the equation of state and/or the
temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
critical region (also in the superfluid phase), a few dozen
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The zeroth-order expansion, suggested in Ref. [11], does
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where δni = ni − 〈n(0)
i 〉. HTE2 gives a fairly accurate descrip-

tion of the edges in present experiments. In practice, one should
fit from some distance r1 until the end of the trap, and vary r1
in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.

If the entire regime of the bosonic optical lattice is
in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
shown in Fig. 7.

V. CONCLUSIONS

We have discussed how single-site resolution detection
tools can be used to obtain the equation of state and/or the
temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
critical region (also in the superfluid phase), a few dozen

033627-5

-- only valid deep in the 
   normal phase 

MEASURING THE EQUATION OF STATE OF TRAPPED . . . PHYSICAL REVIEW A 82, 033627 (2010)

0 10 20 30 40 50
r

0

0.5

1

1.5

2

n(
r)

U/t=10.0, T/t=3.0
2

nd
 order (fit)

normal regionsuperfluid region
(LDA) (LDA)

FIG. 6. (Color online) HTE2 thermometry scheme for a bosonic
optical lattice system. One-hundred cross-sectional density measure-
ments are used to estimate the temperature and chemical potential.
The system consists of a 3D optical lattice with 87Rb atoms with
parameters N = 125 000, µ/t = 4.835, U/t = 10, and T/t = 3. The
blue circles are data averaged over 100 measurements obtained from
a QMC simulation; the red (solid) line is a least-squares fit over the
normal region where µfit/t = 5.244 and Tfit/t = 2.820.

where the zeroth-order partition function Z
(0)
i is

Z
(0)
i =

∑

{ni }
e−β(Di−µini ), (7)

and the on-site diagonal energy Di is
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The zeroth-order expansion, suggested in Ref. [11], does
a rather poor job in describing the edges of the system, as
illustrated in Fig. 5. However, sufficient accuracy over a wide
density range in present-day experiments is found by implying
the second-order [up to (βt)2] partition function,
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where δni = ni − 〈n(0)
i 〉. HTE2 gives a fairly accurate descrip-

tion of the edges in present experiments. In practice, one should
fit from some distance r1 until the end of the trap, and vary r1
in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.

If the entire regime of the bosonic optical lattice is
in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
shown in Fig. 7.

V. CONCLUSIONS

We have discussed how single-site resolution detection
tools can be used to obtain the equation of state and/or the
temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
critical region (also in the superfluid phase), a few dozen
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where δni = ni − 〈n(0)
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tion of the edges in present experiments. In practice, one should
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in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.
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in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
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temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
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The system consists of a 3D optical lattice with 87Rb atoms with
parameters N = 125 000, µ/t = 4.835, U/t = 10, and T/t = 3. The
blue circles are data averaged over 100 measurements obtained from
a QMC simulation; the red (solid) line is a least-squares fit over the
normal region where µfit/t = 5.244 and Tfit/t = 2.820.

where the zeroth-order partition function Z
(0)
i is

Z
(0)
i =

∑

{ni }
e−β(Di−µini ), (7)

and the on-site diagonal energy Di is

Di = U

2
ni(ni − 1). (8)

The zeroth-order expansion, suggested in Ref. [11], does
a rather poor job in describing the edges of the system, as
illustrated in Fig. 5. However, sufficient accuracy over a wide
density range in present-day experiments is found by implying
the second-order [up to (βt)2] partition function,

Z = Z(0)(1 + Z(2)), (9)
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FIG. 7. (Color online) HTE2 thermometry scheme for a bosonic
system that is entirely in the normal phase. No more than a single
shot of cross-sectional density is needed to estimate the temperature
and chemical potential within 10% accuracy. We take a 3D optical
lattice system with bosonic 87Rb atoms and parameters N = 125 000,
µ/t = 25.97, U/t = 50, and T/t = 3. The blue circles are obtained
from a single measurement in a QMC simulation; and the red line is
a least-squares fit over the entire normal region where µfit/t = 25.92
and Tfit/t = 2.824 nK.
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is found by fitting the cross-sectional experiment in situ density
measurement against the density found in HTE2,
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where δni = ni − 〈n(0)
i 〉. HTE2 gives a fairly accurate descrip-

tion of the edges in present experiments. In practice, one should
fit from some distance r1 until the end of the trap, and vary r1
in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.

If the entire regime of the bosonic optical lattice is
in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
shown in Fig. 7.

V. CONCLUSIONS

We have discussed how single-site resolution detection
tools can be used to obtain the equation of state and/or the
temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
critical region (also in the superfluid phase), a few dozen
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   temperature accurately!
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   thermometry.
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The zeroth-order expansion, suggested in Ref. [11], does
a rather poor job in describing the edges of the system, as
illustrated in Fig. 5. However, sufficient accuracy over a wide
density range in present-day experiments is found by implying
the second-order [up to (βt)2] partition function,
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where δni = ni − 〈n(0)
i 〉. HTE2 gives a fairly accurate descrip-

tion of the edges in present experiments. In practice, one should
fit from some distance r1 until the end of the trap, and vary r1
in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.

If the entire regime of the bosonic optical lattice is
in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
shown in Fig. 7.

V. CONCLUSIONS

We have discussed how single-site resolution detection
tools can be used to obtain the equation of state and/or the
temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
critical region (also in the superfluid phase), a few dozen
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FIG. 4. (Color online) FD thermometry scheme in the presence
of doublon-hole indistinguishability. From top to bottom are shown:
(1) cross-sectional density n(r), (2) column-integrated density n(ρ),
(3) dissipation term L(ρ), (4) fluctuation term (ξ = 3) R3(ρ), and (5)
L(ρ)-R3(ρ) relationship. We take a 3D bosonic 87Rb optical lattice
system with N = 125 000, and we average over 1000 independent
measurements obtained from a QMC simulation. In the left column,
the parameters are U/t = 10, T/t = 1, and in the right column,
the parameters are U/t = 50, T/t = 1. Blue circles (green squares)
show the curve where doublons can (cannot) be distinguished from
holes.

and the high potential-energy cost of creating a doublon.
(See Table II.)

IV. HTE2

In this section, we propose an alternative scheme for
thermometry based on HTE2. Deep enough in the edges,
there will always be a normal region for any temperature and
interaction strength where the system is well described by

TABLE II. The estimated temperature for a 3D bosonic 87Rb
optical lattice system in the presence of doublon-hole indistin-
guishability. The parameters are N = 125 000, bin width = 1.0,
ξ = 3 at U/t = 10, 50, and T/t = 1. We average over 1000
uncorrelated measurements obtained from a QMC simulation.

Estimated temperature
System (units of t)

U/t = 10, T/t = 1 0.985 ± 0.008
U/t = 50, T/t = 1 1.003 ± 0.012

HTE2. One advantage of this scheme is that it works not only
for integrated column densities, but also for density profiles
measured only in two-dimensional (2D) cross sections of a 3D
system [20]. In addition, this scheme allows determination of
the chemical potential.

In practice, a single shot will suffice to extract the quantities
of interest. When HTE2 applies, it also gives a foundation
for the limit on the small window size ξ for the former FD
thermometry scheme (indeed, there is no point in applying
the FD scheme whenever HTE2 works). It is possible to use
higher-order schemes other than HTE2, but we find that the
gain is minimal compared to the additional effort. However, it
may be that the density in the edges is so low that it cannot be
measured because of the low signal-to-noise ratio, which will
happen for very low temperatures. In this section, we wish to
make these ideas more quantitative.

In the absence of correlations, the density 〈n(0)
i 〉 is captured

by the zeroth-order high-temperature expansion theory and is
given by

〈
n

(0)
i

〉
= 1

Z
(0)
i

∑

{ni }
nie

−β(Di−µini ), (6)
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FIG. 5. (Color online) Illustrating the concept of wing thermom-
etry for a 3D bosonic 87Rb optical lattice system (i.e., describing
the normal state by high-temperature series expansions). Blue
circles: In situ density profile obtained from 100 uncorrelated
measurements obtained by a QMC simulation with parameters
U/t = 10, T/t = 3, and N = 125 000. The superfluid-normal phase
boundary occurs at the density 〈n〉 = 0.42 or chemical potential
µ/t = −2.75. The second-order series captures all the physics in
the normal regime, whereas the zeroth order has a very small validity
range.
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FIG. 6. (Color online) HTE2 thermometry scheme for a bosonic
optical lattice system. One-hundred cross-sectional density measure-
ments are used to estimate the temperature and chemical potential.
The system consists of a 3D optical lattice with 87Rb atoms with
parameters N = 125 000, µ/t = 4.835, U/t = 10, and T/t = 3. The
blue circles are data averaged over 100 measurements obtained from
a QMC simulation; the red (solid) line is a least-squares fit over the
normal region where µfit/t = 5.244 and Tfit/t = 2.820.

where the zeroth-order partition function Z
(0)
i is

Z
(0)
i =

∑

{ni }
e−β(Di−µini ), (7)

and the on-site diagonal energy Di is

Di = U

2
ni(ni − 1). (8)

The zeroth-order expansion, suggested in Ref. [11], does
a rather poor job in describing the edges of the system, as
illustrated in Fig. 5. However, sufficient accuracy over a wide
density range in present-day experiments is found by implying
the second-order [up to (βt)2] partition function,

Z = Z(0)(1 + Z(2)), (9)
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FIG. 7. (Color online) HTE2 thermometry scheme for a bosonic
system that is entirely in the normal phase. No more than a single
shot of cross-sectional density is needed to estimate the temperature
and chemical potential within 10% accuracy. We take a 3D optical
lattice system with bosonic 87Rb atoms and parameters N = 125 000,
µ/t = 25.97, U/t = 50, and T/t = 3. The blue circles are obtained
from a single measurement in a QMC simulation; and the red line is
a least-squares fit over the entire normal region where µfit/t = 25.92
and Tfit/t = 2.824 nK.
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with γ
(δ)
ij = U (n(δ)

i − n
(δ)
j + 1) + (µi − µj ). The temperature

is found by fitting the cross-sectional experiment in situ density
measurement against the density found in HTE2,
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where δni = ni − 〈n(0)
i 〉. HTE2 gives a fairly accurate descrip-

tion of the edges in present experiments. In practice, one should
fit from some distance r1 until the end of the trap, and vary r1
in order to find the range of applicability of the HTE2 scheme,
see Fig. 6.

If the entire regime of the bosonic optical lattice is
in the normal phase, one would require no more than a
single experimental density measurement to extract a reliable
estimate of the temperature and chemical potential. This is
shown in Fig. 7.

V. CONCLUSIONS

We have discussed how single-site resolution detection
tools can be used to obtain the equation of state and/or the
temperature in trapped ultracold gases in an optical lattice.
We analyzed whether the FD theorem can be used to extract
temperature for present experiments when the LDA is valid [8]
over the entire tap. Taking advantage of the fact that the
density-density correlation length is short away from the
critical region (also in the superfluid phase), a few dozen
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Directed worm algorithm
Feynmann perturbation (boson Hubbard model):  

Chapter 2

Quantum Monte Carlo

This chapter introduces an efficient Quantum Monte Carlo method [41], imple-
mented via the directed worm algorithm [42], that is used to solve the boson
Hubbard model 1.14 exact numerically at finite temperature.

2.1 Quantum statistical mechanics

2.1.1 Feynman path-integral formalism
Rewriting the boson Hubbard hamiltonian 1.14 as Ĥ � µN̂ = Ĥ0 � V̂ such that

Ĥ0 =
U

2

X

i

ni(ni � 1)�
X

i

µini (2.1)

V̂ = t
X

hi,ji

b̂†i b̂j , (2.2)

the equation of motion for the evolution operator Û(⌧, ⌧0) becomes

@

@⌧
Û(⌧, ⌧0) = V̂ (⌧)Û(⌧, ⌧0) (2.3)

in the interaction picture, taking ~ = 1 [43]. With

Û(⌧, ⌧0) = eĤ0⌧ e�Ĥ(⌧�⌧0) e�Ĥ0⌧0 (2.4)
V̂ (⌧) = eĤ0⌧ V̂ e�Ĥ0⌧ , (2.5)

equation (2.3) becomes

Û(⌧, ⌧0)� Û(⌧0, ⌧0) =

Z ⌧

⌧0

d⌧1V̂ (⌧1)Û(⌧1, ⌧0) (2.6)

11

2.1 Quantum statistical mechanics

or (⌧ = �, ⌧0 = 0),

Û(�) = 1 +

Z �

0
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0
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0
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0

d⌧2 V̂ (⌧1)V̂ (⌧2) + · · · (2.7)

According to equation (2.4), we have Û(�) = e�Ĥ0 e��Ĥ , thus the partition function

Z = Tr e��Ĥ = Tr e��Ĥ0 Û(�) (2.8)

In Fock basis {|ii}, the partition function can be written as

Z =
1
X

m=0
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0
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�

(2.9)
where Ĥ0|ii = ✏i|ii and Vij = hi|V̂ |ji.

2.1.2 Configuration and worldlines diagram
The integrand of the partition function Z in equation 2.9 is uniquely determined
if the configuration C = {m, i1 · · · im , ⌧1 · · · ⌧m |0 < ⌧1 < · · · < ⌧m < �} is known.
Defining the configuration weight

Z(C) = e��✏1
�

e�⌧1✏1 Vi1i2 e
⌧1✏2

� · · · �e�⌧
m

✏
m Vi
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, (2.10)

we have now a simpler notation

Z =
X

C

Z(C) (2.11)

hOi =
1

Z

X

C

O(C)Z(C) (2.12)

for diagonal observables hOi = 1
Z
Tr Ôe��Ĥ [41]. Here, O(C) is called the mea-
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surement of Ô for configuration C. In practice, configurations are visualized as
worldlines diagrams. Figure 2.1.2 illustates an example of a worldlines diagram
that corresponds to the configuration C = {m = 8 ; i1 · · · i8 ; ⌧1 · · · ⌧8 | 0 < ⌧1 <
· · · < ⌧8 < �}. In this example,

12

2.1 Quantum statistical mechanics

or (⌧ = �, ⌧0 = 0),
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= 1 +

Z �

0

d⌧1 V̂ (⌧1) +

Z �

0

d⌧1

Z ⌧1

0

d⌧2 V̂ (⌧1)V̂ (⌧2) + · · · (2.7)

According to equation (2.4), we have Û(�) = e�Ĥ0 e��Ĥ , thus the partition function
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Tr Ôe��Ĥ [41]. Here, O(C) is called the mea-
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Figure 2.1: Example of a worldlines diagram of 1D boson Hubbard model with
10 sites. Horizontal axis: Site number 0, · · · , 9. Vertical axis: Imaginary time
⌧/� 2 [0, 1) periodic. Dotted line: 0 particle; Solid line: 1 particle; Double solid
line: 2 particles; Triple solid line: 3 particles. In this example, we set t = 1, U = 4,
µ0 = · · ·µ9 = 0, � = 2.

1. 8 i, ⌧ 2 C, we have

⌧1/� = 0.10 : |i1i = |0, 1, 0, 1, 3, 0, 1, 0, 2, 0i ; ✏1 = 16

⌧2/� = 0.30 : |i2i = |0, 0, 1, 1, 3, 0, 1, 0, 2, 0i ; ✏2 = 16

⌧3/� = 0.35 : |i3i = |0, 0, 1, 1, 3, 0, 0, 1, 2, 0i ; ✏3 = 16

⌧4/� = 0.50 : |i4i = |0, 0, 2, 0, 3, 0, 0, 1, 2, 0i ; ✏4 = 20

⌧5/� = 0.70 : |i5i = |0, 1, 1, 0, 3, 0, 0, 1, 2, 0i ; ✏5 = 16

⌧6/� = 0.75 : |i6i = |0, 1, 1, 0, 3, 0, 1, 0, 2, 0i ; ✏6 = 16

⌧7/� = 0.80 : |i7i = |0, 1, 0, 1, 3, 0, 1, 0, 2, 0i ; ✏7 = 16

⌧8/� = 0.90 : |i8i = |1, 0, 0, 1, 3, 0, 1, 0, 2, 0i ; ✏8 = 16

2. 8 i 2 C, we have

Vi1i2 = 1 , Vi2i3 = 1 , Vi3i4 = 1 , Vi4i5 =
p
2

Vi5i6 =
p
2 , Vi6i7 = 1 , Vi7i8 = 1 , Vi8i1 = 1

3. For some diagonal observables O, we have

N : N(C) = 8

E0 : E0(C) = 16
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Directed worm algorithm

2.3 Directed worm algorithm

For the algorithm to be more efficient, the diagonal energy should be rescaled. A
smart choice is

✏<  ✏< �min{✏<, ✏>}+ ✏o↵set (2.28)
✏>  ✏> �min{✏<, ✏>}+ ✏o↵set (2.29)

where the offset energy ✏o↵set can be any choice of positive number, i.e. ✏o↵set > 0.
Advanced users tune ✏o↵set for better algorithmic efficiency. This choice ensures
that ✏<, ✏> > 0.

Updating density matrix

Whenever the wormhead touches the imaginary plane crossing the time of the
wormtail, the worms are at equal time. When this happens, the corresponding
density matrix element is updated.

2.3.4 Updates in configuration space
The objective of the directed worm algorithm is to generate new configurations
via the extended configuration space stochastically. A configuration becomes an
extended configuration upon the creation of a wormpair, and the vice versa upon
its annihilation.

Wormpair creation/ annihilation

To insert randomly a wormpair, at any time ⌧ 2 [0, �), and at any of the L sites,
there are 4�L ways of doing so to any existing configuration, say X. The factor
4 comes from the fact that, first, either a b̂ � b̂† or b̂† � b̂ wormpair is created,
and second, either the b̂ or b̂† worm is the wormhead, thus the other the wormtail.
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Therefore, any configuration must be 4�L-degenerate in the extended configuration
space, and the relevant weights become

Z(X) = 4�L (2.30)
Z(Y ) = n (2.31)

where n is the number of particles enclosed within the wormpair. Since Z(X)P (X !
Y ) = Z(Y )P (Y ! X), the algorithm defines the transition probabilities as

P (X ! Y ) =
1

4�L
(2.32)

P (Y ! X) =
1

n
. (2.33)

1. In the wormpair-creation process, the probability of locating a random time
and a random site is 1

4�L
. Therefore, the wormpair is always created with

probability 1.
2. In the wormpair-annihilation process, the probability of choosing any 1 of the

n particles to be annihilated is 1
n
. Therefore, the wormpair is always removed

with probability 1.

Summary of moves in configuration space

1. Starting from any configuration, randomly pick a time and a site.
2. At that location, either insert a b̂� b̂† or a b̂†� b̂ wormpair with 50-50 chance.

The following exceptions may arise.
(a) If there is no particle at that location, then insert a b̂† � b̂ wormpair with

50% chance. The other 50% chance goes to not inserting any wormpair.
(b) If the number of particles at that location has reached a maximum, then

insert a b̂� b̂† wormpair with 50% chance. The other 50% chance goes to
not inserting any wormpair.

3. Pick with 50-50 chance either b̂ or b̂† as the wormhead, and thus the other
being the wormtail.

4. The wormhead random-walks in the extended configuration space, until the
wormhead collides into the wormtail.

5. Remove the wormpair.
6. Repeat step 1.

Updating density matrix

1. Just before the annihilation of the wormpair, the diagonal density matrix
element is updated.
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Pacceptance (X →  Y) = 1

Pacceptance (Y →  X) = 1

Move is globally balanced.
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2.3 Directed worm algorithm

3. moves forward in time from ⌧+v to ⌧p0 halted.
The reverse move, from Y to X, invokes the b̂† wormhead to
1. move backward in time from ⌧p0 to ⌧+v halted,
2. jump from site j to site i, thus annihilating the b̂†i b̂j vertex at time ⌧v,
3. move backward in time from ⌧�v to ⌧p halted.

According to equation 2.16, we have

Z(Y )

Z(X)
=

⇣

e�⌧
p

0✏
v hi0p|b̂†j|ivi e⌧p0✏

0
p
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e�⌧
v

✏
p hi0p|t b̂†i b̂j|ivi e⌧v✏v

⌘

⇣

e�⌧
p

✏
p hi0p|b̂†i |ipi e⌧p✏0p

⌘ . (2.19)

Since Z(X)P (X ! Y ) = Z(Y )P (Y ! X), i.e.

P (X ! Y )

P (Y ! X)
=
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thi0p|b̂†j|ivihi0p|b̂†i b̂j|ivi
✏phi0p|b̂†i |ipi

!

(2.20)

(eg. ⌧vp = ⌧v � ⌧p), what remains is simply to allocate the balanced probabilities
for the sub-moves.

Unhalted move in time

The first sub-move involves the movement of wormhead over time, as illustrated
in the above figure. Here, the transition probability from extended configuration
X1 to X2 is set as

P (X1 ! X2) = ✏pe
�✏

p

⌧
p

0
p . (2.21)
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1. By unhalted move over time itself, it does not satisfy detailed balance. To
balance it, the unhalted move must be immediately followed by an attempt to
create a vertex at that new time ⌧p0 . (See later section.)

2. In probability theory, the event of an attempt to create a vertex is naturally
regarded as a Poisson process, a direct consequence of definition 2.21, ie. the
time interval until the random new time ⌧p0 follows an exponential distribution.

3. For the transition probability to make sense, the mean occurrence of such a
Poisson event is ✏p must be strictly positive, ie. ✏p > 0. In implementation,
the new time ⌧p0 is stochastically generated with acceptance probability 1 such
that

⌧p0 � ⌧p = ⌧p0p = � log(1� u)

✏p
(2.22)

where u 2 [0, 1) is an uniformly distributed random number. If ⌧p0 > �, then
⌧p0 will be "modulus"-ed by �, i.e. ⌧p0 ! ⌧p0 % �.

4. In practice, the value of ✏p can turn out to be enormous, when the system
size gets large for instance. When this happens, the algorithm becomes very
inefficient. See later section for a clever fix.

Halted move in time

Implementing equation 2.22, a new time ⌧p0 is stochastically generated with chances
that it exceeds ⌧v such that ⌧p0 > ⌧v �-periodically. When that happens, the al-
gorithm halts the wormhead just before the vertex at time ⌧�v . For the halted
movement of wormhead over time, the transition probability from extended con-
figuration X1 to X2 must therefore be

P (X1 ! X2) =

Z 1

⌧
vp

✏p e
�✏

p

⌧
p

0
p d⌧p0p (2.23)
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1. move backward in time from ⌧p0 to ⌧+v halted,
2. jump from site j to site i, thus annihilating the b̂†i b̂j vertex at time ⌧v,
3. move backward in time from ⌧�v to ⌧p halted.

According to equation 2.16, we have

Z(Y )

Z(X)
=

⇣

e�⌧
p

0✏
v hi0p|b̂†j|ivi e⌧p0✏

0
p

⌘⇣

e�⌧
v

✏
p hi0p|t b̂†i b̂j|ivi e⌧v✏v

⌘

⇣

e�⌧
p

✏
p hi0p|b̂†i |ipi e⌧p✏0p

⌘ . (2.19)

Since Z(X)P (X ! Y ) = Z(Y )P (Y ! X), i.e.

P (X ! Y )

P (Y ! X)
=

✓

✏p e
�✏

p

⌧
vp e�✏

v

⌧
p

0
v

e�✏0
p

⌧
p

0
v e�✏0

p

⌧
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◆

⇥
 

thi0p|b̂†j|ivihi0p|b̂†i b̂j|ivi
✏phi0p|b̂†i |ipi

!

(2.20)

(eg. ⌧vp = ⌧v � ⌧p), what remains is simply to allocate the balanced probabilities
for the sub-moves.

Unhalted move in time

The first sub-move involves the movement of wormhead over time, as illustrated
in the above figure. Here, the transition probability from extended configuration
X1 to X2 is set as

P (X1 ! X2) = ✏pe
�✏

p

⌧
p

0
p . (2.21)
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Quantum Monte Carlo

1. By unhalted move over time itself, it does not satisfy detailed balance. To
balance it, the unhalted move must be immediately followed by an attempt to
create a vertex at that new time ⌧p0 . (See later section.)

2. In probability theory, the event of an attempt to create a vertex is naturally
regarded as a Poisson process, a direct consequence of definition 2.21, ie. the
time interval until the random new time ⌧p0 follows an exponential distribution.

3. For the transition probability to make sense, the mean occurrence of such a
Poisson event is ✏p must be strictly positive, ie. ✏p > 0. In implementation,
the new time ⌧p0 is stochastically generated with acceptance probability 1 such
that

⌧p0 � ⌧p = ⌧p0p = � log(1� u)

✏p
(2.22)

where u 2 [0, 1) is an uniformly distributed random number. If ⌧p0 > �, then
⌧p0 will be "modulus"-ed by �, i.e. ⌧p0 ! ⌧p0 % �.

4. In practice, the value of ✏p can turn out to be enormous, when the system
size gets large for instance. When this happens, the algorithm becomes very
inefficient. See later section for a clever fix.

Halted move in time

Implementing equation 2.22, a new time ⌧p0 is stochastically generated with chances
that it exceeds ⌧v such that ⌧p0 > ⌧v �-periodically. When that happens, the al-
gorithm halts the wormhead just before the vertex at time ⌧�v . For the halted
movement of wormhead over time, the transition probability from extended con-
figuration X1 to X2 must therefore be

P (X1 ! X2) =

Z 1

⌧
vp

✏p e
�✏

p

⌧
p

0
p d⌧p0p (2.23)
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or
P (X1 ! X2) = e�✏

p

⌧
vp (2.24)

1. By halted move over time itself, it does not satisfy detailed balance. To balance
it, the halted move must be immediately followed by an attempt to delete or
relink the vertex at time ⌧v. (See later section.)

2. Halting of this kind only happens when the wormhead collides with a vertex
of conjugate type, ie. either a b̂† wormhead colliding with a b̂-vertex (in this
example), or a b̂ wormhead colliding with a b̂†-vertex.

3. There are occasions whereby the wormhead collides with a vertex of the same
type. See the following figure. When this happens, the algorithm first halts

the wormhead just before the vertex at time ⌧�v . Next, the wormhead crosses
the vertex with new time ⌧+v with probability 1, which is a consequence of the
commutation relations [b̂, b̂] = [b̂†, b̂†] = 0. Finally, a new time is stochastically
generated again according to equation 2.22. Its validity will be justified in a
later section.

4. An useful property of Poisson events is its memorylessness, ie. the event
whereby the wormhead moves unhaltedly to a new time ⌧p0 is stochastically
equivalent to the event whereby the wormhead first moves haltedly to an
intermediate time ⌧v, then moves unhaltedly to ⌧p0 . One can check easily from
equations 2.21 and 2.24.

Inserting, deleting, and relinking vertex

The figure below is a class of extended configurations that illustrate vertex inser-
tion, deletion, and relinking for 1D systems. (2D and 3D are natural generalisa-
tions.) Meanwhile, note that the time interval shown on the figure from ⌧v to ⌧+v

20

Movement of worms:

1.   not halted 2.  halted

Move is NOT globally balanced.

τp’p ~ Exp(εp)

1.  QMC-DWA assigns:

2.  It either gets halted or not.

⇒ Choose a exponential random number.

3.  Memoryless
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Directed worm algorithm
1)  Inserting vertex,  2) deleting vertex,  3) relinking vertex, or  4) worm bounce:

Quantum Monte Carlo

is indeed over-exaggerated only for the purpose of clarity. In fact, being at time
⌧+v , the wormhead is just infinitesimally above the vertex at time ⌧v for extended
configurations Y1, Y2. The following are the only 2 sub-moves in the algorithm

that involves an attempt to jump wormhead across sites.
1. Starting from X(f),

(a) the wormhead could jump to either Y (f)
1 or Y (f)

2 , and inserts a vertex along
the way;

(b) the wormhead could bounce, or turn around, to X(b).
2. Starting from Y

(b)
1 ,

(a) the wormhead could jump to X(b), and deletes the vertex along the way;
(b) the wormhead could jump to Y

(f)
2 , and relinks the vertex along the way;

(c) the wormhead could bounce, or turn around, to Y
(f)
1 .
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The algorithm fixes the following transition probabilities.

P (X, Y1, Y2 ! X) = ✏v� hiv+ |b̂†j|iv�i (2.25)

P (X, Y1, Y2 ! Y1) = t hiv+ |b̂†i |ivihiv|b̂ib̂†j|iv�i (2.26)

P (X, Y1, Y2 ! Y2) = t hiv+ |b̂†k|ivihiv|b̂kb̂†j|iv�i (2.27)

To choose which of the sub-moves, one has either the choice of heatbath algorithm
or Metropolis algorithm. It is the preference of the author to choose the latter.
This completes the discussion for all sub-moves of the algorithm in the extended
configuration space.

Crossing vertex

For the above extended configurations, the relevant weights are

Z(X) = e�✏
p

⌧
phiv|b̂†|ipie✏v⌧p ⇥ e�✏

v

⌧
vhi0v|b̂†|ivie✏

0
v

⌧
v

Z(Y ) = e�✏
p

⌧
vhiv|b̂†|ipie✏v⌧v ⇥ e�✏

v

⌧+
v hi0v|b̂†|ivie✏

0
v

⌧+
v

or
Z(Y )

Z(X)
=

e�✏
p

⌧
vp

e�✏
v

⌧
vp

Balancing with Z(X)P (X ! Y ) = Z(Y )P (Y ! X), the algorithm sets

P (X ! Y ) = e�✏
p

⌧
vp

P (Y ! X) = e�✏
v

⌧
vp

The above transition probability suggests that whenever the wormhead collides
with a vertex of the same type at time ⌧v, it first halts at time ⌧�v and then crosses
the vertex with probability 1 to a new time ⌧+v . This global move is balanced.
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1.  QMC-DWA assigns:

2.  The following moves are globally balanced:

a.  unhalted move + 
    insert vertex/ bounce worm 

b.  halted move + 
    delete/relink vertex/ bounce worm 

L. Pollet, K. V. Houcke, S. M. A. Rombouts, 
Engineering local optimality in QMC algorithms,

J. Comp. Phys. 225/2, 2249-2266 (2007)
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Directed worm algorithm
L. Pollet, K. V. Houcke, S. M. A. Rombouts, 

Engineering local optimality in QMC algorithms,
J. Comp. Phys. 225/2, 2249-2266 (2007)

Crossing vertex:

2.3 Directed worm algorithm

The algorithm fixes the following transition probabilities.

P (X, Y1, Y2 ! X) = ✏v� hiv+ |b̂†j|iv�i (2.25)

P (X, Y1, Y2 ! Y1) = t hiv+ |b̂†i |ivihiv|b̂ib̂†j|iv�i (2.26)

P (X, Y1, Y2 ! Y2) = t hiv+ |b̂†k|ivihiv|b̂kb̂†j|iv�i (2.27)

To choose which of the sub-moves, one has either the choice of heatbath algorithm
or Metropolis algorithm. It is the preference of the author to choose the latter.
This completes the discussion for all sub-moves of the algorithm in the extended
configuration space.

Crossing vertex

For the above extended configurations, the relevant weights are

Z(X) = e�✏
p

⌧
phiv|b̂†|ipie✏v⌧p ⇥ e�✏

v

⌧
vhi0v|b̂†|ivie✏

0
v

⌧
v

Z(Y ) = e�✏
p

⌧
vhiv|b̂†|ipie✏v⌧v ⇥ e�✏

v

⌧+
v hi0v|b̂†|ivie✏

0
v

⌧+
v

or
Z(Y )

Z(X)
=

e�✏
p

⌧
vp

e�✏
v

⌧
vp

Balancing with Z(X)P (X ! Y ) = Z(Y )P (Y ! X), the algorithm sets

P (X ! Y ) = e�✏
p

⌧
vp

P (Y ! X) = e�✏
v

⌧
vp

The above transition probability suggests that whenever the wormhead collides
with a vertex of the same type at time ⌧v, it first halts at time ⌧�v and then crosses
the vertex with probability 1 to a new time ⌧+v . This global move is balanced.

22

2.3 Directed worm algorithm

The algorithm fixes the following transition probabilities.

P (X, Y1, Y2 ! X) = ✏v� hiv+ |b̂†j|iv�i (2.25)

P (X, Y1, Y2 ! Y1) = t hiv+ |b̂†i |ivihiv|b̂ib̂†j|iv�i (2.26)

P (X, Y1, Y2 ! Y2) = t hiv+ |b̂†k|ivihiv|b̂kb̂†j|iv�i (2.27)

To choose which of the sub-moves, one has either the choice of heatbath algorithm
or Metropolis algorithm. It is the preference of the author to choose the latter.
This completes the discussion for all sub-moves of the algorithm in the extended
configuration space.

Crossing vertex

For the above extended configurations, the relevant weights are

Z(X) = e�✏
p

⌧
phiv|b̂†|ipie✏v⌧p ⇥ e�✏

v

⌧
vhi0v|b̂†|ivie✏

0
v

⌧
v

Z(Y ) = e�✏
p

⌧
vhiv|b̂†|ipie✏v⌧v ⇥ e�✏

v

⌧+
v hi0v|b̂†|ivie✏

0
v

⌧+
v

or
Z(Y )

Z(X)
=

e�✏
p

⌧
vp

e�✏
v

⌧
vp

Balancing with Z(X)P (X ! Y ) = Z(Y )P (Y ! X), the algorithm sets

P (X ! Y ) = e�✏
p

⌧
vp

P (Y ! X) = e�✏
v

⌧
vp

The above transition probability suggests that whenever the wormhead collides
with a vertex of the same type at time ⌧v, it first halts at time ⌧�v and then crosses
the vertex with probability 1 to a new time ⌧+v . This global move is balanced.

22

2.3 Directed worm algorithm

The algorithm fixes the following transition probabilities.

P (X, Y1, Y2 ! X) = ✏v� hiv+ |b̂†j|iv�i (2.25)

P (X, Y1, Y2 ! Y1) = t hiv+ |b̂†i |ivihiv|b̂ib̂†j|iv�i (2.26)

P (X, Y1, Y2 ! Y2) = t hiv+ |b̂†k|ivihiv|b̂kb̂†j|iv�i (2.27)

To choose which of the sub-moves, one has either the choice of heatbath algorithm
or Metropolis algorithm. It is the preference of the author to choose the latter.
This completes the discussion for all sub-moves of the algorithm in the extended
configuration space.

Crossing vertex

For the above extended configurations, the relevant weights are

Z(X) = e�✏
p

⌧
phiv|b̂†|ipie✏v⌧p ⇥ e�✏

v

⌧
vhi0v|b̂†|ivie✏

0
v

⌧
v

Z(Y ) = e�✏
p

⌧
vhiv|b̂†|ipie✏v⌧v ⇥ e�✏

v

⌧+
v hi0v|b̂†|ivie✏

0
v

⌧+
v

or
Z(Y )

Z(X)
=

e�✏
p

⌧
vp

e�✏
v

⌧
vp

Balancing with Z(X)P (X ! Y ) = Z(Y )P (Y ! X), the algorithm sets

P (X ! Y ) = e�✏
p

⌧
vp

P (Y ! X) = e�✏
v

⌧
vp

The above transition probability suggests that whenever the wormhead collides
with a vertex of the same type at time ⌧v, it first halts at time ⌧�v and then crosses
the vertex with probability 1 to a new time ⌧+v . This global move is balanced.

22

2.3 Directed worm algorithm

The algorithm fixes the following transition probabilities.

P (X, Y1, Y2 ! X) = ✏v� hiv+ |b̂†j|iv�i (2.25)

P (X, Y1, Y2 ! Y1) = t hiv+ |b̂†i |ivihiv|b̂ib̂†j|iv�i (2.26)

P (X, Y1, Y2 ! Y2) = t hiv+ |b̂†k|ivihiv|b̂kb̂†j|iv�i (2.27)

To choose which of the sub-moves, one has either the choice of heatbath algorithm
or Metropolis algorithm. It is the preference of the author to choose the latter.
This completes the discussion for all sub-moves of the algorithm in the extended
configuration space.

Crossing vertex

For the above extended configurations, the relevant weights are

Z(X) = e�✏
p

⌧
phiv|b̂†|ipie✏v⌧p ⇥ e�✏

v

⌧
vhi0v|b̂†|ivie✏

0
v

⌧
v

Z(Y ) = e�✏
p

⌧
vhiv|b̂†|ipie✏v⌧v ⇥ e�✏

v

⌧+
v hi0v|b̂†|ivie✏

0
v

⌧+
v

or
Z(Y )

Z(X)
=

e�✏
p

⌧
vp

e�✏
v

⌧
vp

Balancing with Z(X)P (X ! Y ) = Z(Y )P (Y ! X), the algorithm sets

P (X ! Y ) = e�✏
p

⌧
vp

P (Y ! X) = e�✏
v

⌧
vp

The above transition probability suggests that whenever the wormhead collides
with a vertex of the same type at time ⌧v, it first halts at time ⌧�v and then crosses
the vertex with probability 1 to a new time ⌧+v . This global move is balanced.

22

1.  It gets halted by like-vertex.

2.  It crosses the vertex with 
    acceptance probability 1

Move is globally balanced.
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ALPS-2.2: QMC-DWA

Tutorial example:  https://alps.comp-phys.org/mediawiki/index.php/ALPS_2_Tutorials:DWA-02_Density_Profile

Implementing QMC-DWA is easy and convenient within ALPS Python!

1.  Setup the parameters:

2.  Run simulation:

3.  Evaluate results:

4.  Visualize:
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1. Magnetism in optical lattices
Density Functional Theory (for shallow fermionic optical lattices)
Magnetism is stabilized by lattice bandstructure effects
Phase diagram, ferromagnetism/ antiferromagnetism, SDW gap as indirect probe

2. Thermometry in optical lattices
Fluctuation-dissipation thermometry -- feasible via window sizing 
Wing thermometry -- HTE2 valid entirely in normal region.

3. QMC-DWA implementation in ALPS-2.2
easy and convenient within ALPS Python

P. N. Ma, S. Pilati, M. Troyer, and X. Dai, 
Density functional theory for atomic Fermi gases, 
Nature Phys. 8, 601 (2012)

P. N. Ma, L. Pollet, and M. Troyer,  
Measuring the equation of state of trapped 
ultracold bosonic systems in an optical lattice 
with in-situ density imaging , 
Phys. Rev. A. 82, 033627 (2010)

Conclusion/Outlook
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