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3D Scene Flow Estimation
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FlyingThings3D[1]

Given two point clouds                        and                          acquired by the same observer in two time 
steps, the goal is to estimate the displacement vectors                                                                  .

X ∈ RN×3 Y ∈ RM×3

V = fθ(X,Y) s.t. X+V ∼∼∼ Y

Prior Work

stereoKITTI[2]

Fully supervised methods: trained on sythetic data such as FT3D (large domain gap)

Unsupervised: trained on the target domain, but fail to reach competitive performance

Scenes can be decomposed into agents that move as rigid bodies

Our Formulation

This object level representation:

prevents physically non viable flow estimates

provides a hollistic understanding of the scene

enables test-time optimization

allows reducing the supervision requirements

Network Architecture

Shared backbone network with task-specific heads 
Can be trained in a weakly supervised manner directly on the target domain 

no labels ego-motion FG/BG semantic instance scene flow

FlowNet3D[3]

HPLFlowNet[4]

PointPwcNet[5]

EgoFlow[6]

Flot[7]
PointPwcNet[5]

EgoFlow[6] Ours

Results

LidarKITTI[8]:

Input point clouds 3D endpoint error Aligned point clouds

Generalization to Waymo Open[9]:

Input point clouds Aligned point clouds Inferred object masks

Comparison to FLOT[7]:

Input point clouds FLOT Ours

Background segmentation head

Background segmentation head

Ego-motion head

Scene flow head

Instance clustering

Per-point scene flow

Object-level rigid transformations

L = LBG + Lego + LFGLoss function:
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